• 제목/요약/키워드: explosion pressure

검색결과 461건 처리시간 0.037초

Kick Motor 시험장 충격파 전파 예측 (Prediction of the Blast Wave Propagation Over a Kick Motor Test Facility)

  • 옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.220-223
    • /
    • 2008
  • A test facility to measure the performance of a KM(Kick Motor) is constructed, and prediction of blast wave propagation over the facility is performed to check if the safety of test personnel in MCC(Main Control Center) can be guaranteed even for the most severe explosion. Assuming that the initial explosion energy is contained in a sphere under the pressure of 500, 1000, 1500 psi, respectively, the radius of the sphere is determined for each pressure to set the mass of contained explosion gas to 35 kg. The material properties of explosion gas are set to be the ones of KM propellant combustion gas under normal condition. To reduce the effort and time required for a complex three-dimensional modeling, the flowfield is approximated to axismmetry. Calculations are performed for all three initial pressure conditions, and the analysis of the result is given for 1500 psi which is expected to be the worst case. The maximum pressure is 3.5 psig while the minimum pressure is -1.2 psig on the outer wall of MCC, and the maximum pressure difference between the inner and outer walls of protection wall amounts to 3.0 psi.

  • PDF

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

The Influence of Pressure, Temperature, and Addition of CO2 on the Explosion Risk of Propylene used in Industrial Processes

  • Choi, Yu-Jung;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.610-617
    • /
    • 2020
  • In process installations, chemicals operate at high temperature and high pressure. Propylene is used as a basic raw material for manufacturing synthetic materials in the petrochemical industry; However, it is a flammable substance and explosive in the gaseous state. Thus, caution is needed when handling propylene. To prevent explosions, an inert gas, carbon dioxide, was used and the changes in the extent of explosion due to changes in pressure and oxygen concentration at 25 ℃, 100 ℃, and 200 ℃ were measured. At constant temperature, the increase in explosive pressure and the rates of the explosive pressure were observed to rise as the pressure was augmented. Moreover, as the oxygen concentration decreased, the maximum explosive pressure decreased. At 25 ℃ and oxygen concentration of 21%, as the pressure increased from 1.0 barg to 2.5 bar, the gas deflagration index (Kg) increased significantly from 4.71 barg·m/s to 18.83 barg·m/s.

밀폐공간내의 가연성가스의 점화외 유독성 가스 발생에 대한 연구 (Iginition energy effects and noxious product gases of combustible premixed gas in closed space)

  • 김한석;오규형;최연석;문정기
    • 한국안전학회지
    • /
    • 제7권3호
    • /
    • pp.35-42
    • /
    • 1992
  • Ignition energy effects of concentration of mixed gas In closed cylindrical vessel(1, 832㎤) are studied. The ignition energy ranged from 25 Joule to 110 Joule, and hidrogen and methane gases were used for flammable gas at stoichiometric condition with oxygen gas and nitrogen gas (N2) was for inert gas, which concentration was maximum 60% . The explosion pressure, temperature, concentration of product gases were calculated. It is found that - The explosion pressure and explosion velocity increase with ignition energy. - The gradience of explosion velocity with ignition energy is steeper than explosion pressure. - The results of calculation are similiar with results of experiment. - NOx is not serious product gas for methane and hydrogen gas, but CO is serious at certain concentration for methane in asphyxiation.

  • PDF

노통연관식 보일러의 압궤사고 방지대책 (Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler)

  • 이근호
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

Near-explosion protection method of π-section reinforced concrete beam

  • Sun, Qixin;Liu, Chao
    • Geomechanics and Engineering
    • /
    • 제28권3호
    • /
    • pp.209-224
    • /
    • 2022
  • In this study, the numerical analysis model of π-beam explosion is established to compare and analyze the failure modes of the π-beam under the action of explosive loads, thus verifying the accuracy of the numerical model. Then, based on the numerical analysis of different protection forms of π beams under explosive loads, the peak pressure of π beam under different protection conditions, the law of structural energy consumption, the damage pattern of the π beam after protection, and the protection efficiency of different protective layers was studied. The testing results indicate that the pressure peak of π beam is relatively small under the combined protection of steel plate and aluminum foam, and the peak value of pressure decays quickly along the beam longitudinal. Besides, as the longitudinal distance increases, the pressure peak attenuates most heavily on the roof's explosion-facing surface. Meanwhile, the combined protective layer has a strong energy consumption capacity, the energy consumed accounts for 90% of the three parts of the π beam (concrete, steel, and protective layer). The damaged area of π beam is relatively small under the combined protection of steel plate and aluminum foam. We also calculate the protection efficiency of π beams under different protection conditions using the maximum spalling area of concrete. The results show that the protective efficiency of the combined protective layer is 45%, demonstrating a relatively good protective ability.

식품분진의 폭발 특성과 발화온도에 관한 연구 (A study on the explosion properties and Autoignition Temperature of a food additive Dusts)

  • 안형환
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 춘계학술대회
    • /
    • pp.301-310
    • /
    • 2001
  • A study for the dangerous properties measurment of dust explosion was attended by the various dust concentration on Anthraquinone, Sodiumbenzoic acid, Corn starch, soy sauce powder, and cheese powder. As the result, maximum explosion pressure, the maximum rate of pressure rise, autoigntion temperature, and the water content of dust on lower limit explosion concentration was obtained as follows 1. The lower limit explosion concentration on soy sauce powder with the humidity of 65 to 90% increased by increasing the con tent of moisture, and the effect of dry air and moisture air decreased better in make of dry air. 2. The effect of a various dust concentration on autoigntion temperatures is investigated, If the vessel of dust explosion is small size and the easiness of autoignition was controled by air within the vessel, because it was better decreased air with increasing of dust concentration 3. The maximum explosion pressures of Anthraguinone, sodiumbenzoic acid, com starch, soy sauce powder, and cheese powder were 1.0g/$\ell$, 1.0g/$\ell$, 1.5g/$\ell$, 1.5g/$\ell$, and 1.5g/$\ell$, respectively, and the maximum rate of pressure rise were 0.5g/$\ell$, 0.5g/$\ell$, 1.0g/$\ell$, 1.0g/$\ell$, and 1.0g/$\ell$, respectively.

  • PDF

소규모 LNG 저장시설의 안전거리 기준 연구 (A Study on Safety Distance for Small Scale LNG Storage facility)

  • 오신규;조영도
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.185-191
    • /
    • 2014
  • In this study safety distance was investigated for small-scale LNG storage facilities in order to provide basic data for safety. The results are as follows; (1) For explosion pressure criteria, current criteria are reasonable, but water spray system should be recommended to LNG storage tank to ensure safety. (2) For criteria based on the results of the quantitative risk assessment, criteria applied to people are $5kW/m^2$ for radiation, LFL for dispersion, and 7kPa for explosion pressure. And criteria applied to facility are $37.5kW/m^2$ for radiation and 20 kPa for explosion pressure.

프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 ℃에서 산소농도와 압력의 변화에 따른 실험적 연구 (Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 ℃ for the Assessment of the Risks of Fire and Explosion of Propylene)

  • 최유정;최재욱
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.356-361
    • /
    • 2020
  • 프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기 위하여 200 ℃ 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다. 본 연구에서는 프로필렌-질소-산소를 사용하여 온도 200 ℃에서 압력의 변화(0.10 MPa, 0.15 MPa, 0.20 MPa, 0.25 MPa)에 따른 실험적 연구를 수행하였다. 산소농도가 21%일 때 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 폭발 하한계는 2.2%에서 1.9%로감소하였으며, 폭발상한계는 14.8%에서 17.6%로증가하였다. 또한최소산소농도는 10.3%에서 10.0%로 감소하여 압력이 증가할수록 폭발 범위가 넓어져 위험성이 증가하였다. 폭발압력은 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 1.84 MPa에서 6.04 MPa로 증가하였으며, 최대 폭발압력상승속도는 90 MPa/s에서 298 MPa/s로 크게 증가하였다. 고온 및 고압에서는 폭발의 위험성이 증가하므로 프로필렌을 사용하는 사업장의 폭발사고 예방을 위한 기초자료를 제공하고자 한다.

밀폐 공간내 Block에 의한 폭발특성 변화에 관한 연구 (A Study on the Variation of Explosion Characteristics by the Block in Closed Vessel)

  • 오규형;김종복;이성은;김홍;이영철;박승수
    • 한국가스학회지
    • /
    • 제3권3호
    • /
    • pp.23-28
    • /
    • 1999
  • 밀폐공간 내에 블록을 조합하여 부피와 표면적이 다르게 내용물을 채우고 용기 부피에 대한 내용물의 부피와 내용물의 표면적을 변화시키면서 LPG 또는 NG와 공기 혼합가스의 폭발특성을 측정하여 밀폐공간 내부에 있는 내용물의 부피와 표면적의 변화가 폭발특성에 미치는 영향을 해석하고자 하였다. 폭발용기는 가로 세로 높이가 각각 $100cm{\times}60cm{\times}45cm$인 부피 270리터의 금속 용기이며, 용기 내 가연성 혼합가스는 전기 스파크로 착화시켰고, strain형 압력센서로 폭발압력을 측정하였다. 실험 결과 부피봉쇄율이 증가할수록 폭발압력이 감소하였으며, 내용물의 표면적의 증가에 따라서도 폭발압력이 낮아졌으며, 이러한 폭발압력의 감소 경향은 표면적의 증가에 대한 영향보다 부피의 증가에 의한 영향이 더욱 크게 나타났다.

  • PDF