DOI QR코드

DOI QR Code

Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 ℃ for the Assessment of the Risks of Fire and Explosion of Propylene

프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 ℃에서 산소농도와 압력의 변화에 따른 실험적 연구

  • Choi, Yu-Jung (Department of Fire Protection Engineering, Pukyong National University) ;
  • Choi, Jae-Wook (Department of Fire Protection Engineering, Pukyong National University)
  • Received : 2020.02.24
  • Accepted : 2020.04.30
  • Published : 2020.08.01

Abstract

Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 ℃. At 21% oxygen, as pressure increased from 0.10 MPa to 0.25 MPa, lower explosion limit (LEL) decreased from 2.2% to 1.9% while upper explosion limit (UEL) increased from 14.8% to 17.6%. In addition, minimum oxygen concentration (MOC) decreased from 10.3% to 10.0%, indicating higher risks with the expanded explosive range as pressure increased. With increase of pressure from 0.10 MPa to 0.25 MPa, explosion pressure increased from 1.84 MPa to 6.04 MPa, and the rate of rise of maximum explosion pressure increased drastically from 90 MPa/s to 298 MPa/s. It is hoped that these results can be used as basic data to prevent accidents in factories using propylene.

프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기 위하여 200 ℃ 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다. 본 연구에서는 프로필렌-질소-산소를 사용하여 온도 200 ℃에서 압력의 변화(0.10 MPa, 0.15 MPa, 0.20 MPa, 0.25 MPa)에 따른 실험적 연구를 수행하였다. 산소농도가 21%일 때 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 폭발 하한계는 2.2%에서 1.9%로감소하였으며, 폭발상한계는 14.8%에서 17.6%로증가하였다. 또한최소산소농도는 10.3%에서 10.0%로 감소하여 압력이 증가할수록 폭발 범위가 넓어져 위험성이 증가하였다. 폭발압력은 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 1.84 MPa에서 6.04 MPa로 증가하였으며, 최대 폭발압력상승속도는 90 MPa/s에서 298 MPa/s로 크게 증가하였다. 고온 및 고압에서는 폭발의 위험성이 증가하므로 프로필렌을 사용하는 사업장의 폭발사고 예방을 위한 기초자료를 제공하고자 한다.

Keywords

References

  1. Liu, S., Gao. X. and Zhang, S., "Self-adaptive Chaotic Local Search Particle Swarm Optimization for Propylene Explosion Region Parameter Identification", The 31th Chinese Control and Decision Conference(CCDC) IEEE, 1702-1707(2019).
  2. Crowl, D. A. and Louvar, J. F., "Chemical Process Safety: Fundamentals with Application", Pearson Education International, Boston, 225-260(2011).
  3. Korzynski, M. D. and Dinca, M., "Oxidative Dehydrogenation of Propane on the Realm of Metal-Organic Framework", ACS Central Science, 10-12(2017).
  4. Kim, W. K., Kim, H. H., Ryu, J. W. and Choi, J. W., "The Measurement of the Explosion Limit and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number", Korean Chem. Eng. Res., 55(5), 618-622(2017). https://doi.org/10.9713/kcer.2017.55.5.618
  5. NFPA 68, "Guide for Venting Deflagrations", National Fire Protection(1998).
  6. NFPA 68, "Standard on Explosion Protection by Deflagrations Vending", Quincy, MA(2013).
  7. Lee, C. J. and Kim, L. H., "Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process", Korean Chem. Eng. Res., 57(6), 790-803(2019). https://doi.org/10.9713/kcer.2019.57.6.790
  8. Mathieu, D., "Power Low Expressions for Predicting Lower and Upper Flammability Limit Temperature", Industrial & Engineering Chemistry Research, 52(26), 9317-9322(2013). https://doi.org/10.1021/ie4002348
  9. Razus, D., Oancea, D. and Ionescu, N. I., "Burning Velocity Determination by Spherical Bomb Technique. Part II. Application to Gaseous Propylene-air Mixtures of Various Compositions, Pressure and Temperatures", Rev. Rou. Chim., 45, 319-330(2000).
  10. Yu, X., Yan, X., Ji, W., Luo, C., Yao, F. and Yu, J., "Effect of Superambient Conditions on the Upper Explosion Limit of Ethane/oxygen and Ethylene/oxygen Mixtures", J. Loss Prevention in the Process Industries, 59, 100-105(2019). https://doi.org/10.1016/j.jlp.2019.03.009
  11. Giurcan, V., Mitu, M., Razus, D. and Oancea, D., "Influence of Inert Additives on Smallscale Closed Vessel Explosions of Propaneair Mixture", Fire Safety J., 111, 102939(2020). https://doi.org/10.1016/j.firesaf.2019.102939
  12. Luo, Z., Liu, L., Cheng, F., Wang, T., Su, B., Zhang, J., Gao, S. and Wang, C., "Effects of a Carbon Monoxide-dominant Gas Mixture on the Explosion and Flame Propagation Behaviors of Methane in Air", J. Loss Prevention in the Process Industries, 58, 8-16(2019). https://doi.org/10.1016/j.jlp.2019.01.004
  13. Jo, Y. D., "Estimate Minimum Amount of Methane for Explosion in a Confined Space", J. Korean Institute of Gas, 21(4), 1-5(2017). https://doi.org/10.7842/kigas.2017.21.4.1
  14. Choi, Y. J., Heo, J. M., Kim, J. H. and Choi, J. W., "A Study on the Measurement of Explosion Range by $CO_2$ Addition for the Process Safety Operation of Propylene", J. Korea Academia Instial Cooperation Society, 20(7), 599-606(2019).
  15. Beak, J. H., Lee, H. J. and Jang, C. B., "A Methodology for Determination of the Safety Distance in Chemical Plants using CFD Modeling", J. Korean Society of Safety, 31(3), 162-167(2016). https://doi.org/10.14346/JKOSOS.2016.31.3.162
  16. Zhang, B., Xiu, G. and Bai, C., "Explosion Characteristics of Argon/nitrogen Diluted Natural Gas-air Mixtures", Fuel, 124, 125-132(2014). https://doi.org/10.1016/j.fuel.2014.01.090
  17. Chen, S., Chen, H., Zhu, Q. and Liang, D., "Effect of Initial Temperature and Initial Pressure on vapor Explosion Characteristics of Nitro Thinner", J. Loss Prevention in the Process Industries, 61, 298-304(2019). https://doi.org/10.1016/j.jlp.2019.05.020
  18. Razus, D., Brinzea, V., Mitu, M. and Oancea, D., "Temperature and Pressure Influence on Explosion Pressures of Closed Vessel Propaneair Deflagrations", J. Hazardous Materials, 174, 548-555(2010). https://doi.org/10.1016/j.jhazmat.2009.09.086
  19. Ha, D. M., "Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne", Korean Chem. Eng. Res., 56(4), 474-478(2018). https://doi.org/10.9713/KCER.2018.56.4.474
  20. Leffler, W. L., Natural Gas Liquids: A Nontechnical Guide, PennWell Books, Tulsa, Oklahoma, USA, 112-115(2014).
  21. Cengel, Y. A. and Cimbala, J. M., Fluid Mechanics: Fundamentals and Applications 4 edition in SI units, Mc Graw-Hill, New York, 40-42(2019).
  22. Yan, X. T. and Xu, Y., Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials, Springer, London, 29-30(2010).
  23. ASTM E918-83, Standard Practice for Determinimg Limits of Flammability of Chemicals at Elecated Temperature and Pressure, PA: ASTM International(2011).