• Title/Summary/Keyword: explicit solution

Search Result 267, Processing Time 0.02 seconds

Multi-cracking modelling in concrete solved by a modified DR method

  • Yu, Rena C.;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.371-388
    • /
    • 2004
  • Our objective is to model static multi-cracking processes in concrete. The explicit dynamic relaxation (DR) method, which gives the solutions of non-linear static problems on the basis of the steady-state conditions of a critically damped explicit transient solution, is chosen to deal with the high geometric and material non-linearities stemming from such a complex fracture problem. One of the common difficulties of the DR method is its slow convergence rate when non-monotonic spectral response is involved. A modified concept that is distinct from the standard DR method is introduced to tackle this problem. The methodology is validated against the stable three point bending test on notched concrete beams of different sizes. The simulations accurately predict the experimental load-displacement curves. The size effect is caught naturally as a result of the calculation. Micro-cracking and non-uniform crack propagation across the fracture surface also come out directly from the 3D simulations.

Buckling analysis of elastically-restrained steel plates under eccentric compression

  • Qin, Ying;Shu, Gan-Ping;Du, Er-Feng;Lu, Rui-Hua
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.379-389
    • /
    • 2018
  • In this research, the explicit closed-form local buckling solution of steel plates in contact with concrete, with both loaded and unloaded edges elastically restrained against rotation and subjected to eccentric compression is presented. The Rayleigh-Rize approach is applied to establish the eigenvalue problem for the local buckling performance. Buckling shape which combines trigonometric and biquadratic functions is introduced according to that used by Qin et al. (2017) on steel plate buckling under uniform compression. Explicit solutions for predicting the local buckling stress of steel plate are obtained in terms of the rotational stiffness. Based on different boundary conditions, simply yet explicit local buckling solutions are discussed in details. The proposed formulas are validated against previous research and finite element results. The influences of the loading stress gradient parameter, the aspect ratio, and the rotational stiffness on the local buckling stress resultants of steel plates with different boundary conditions were evaluated. This work can be considered as an alternative to apply a different buckling shape function to study the buckling problem of steel plate under eccentric compression comparing to the work by Qin et al. (2018), and the results are found to be in consistent with those in Qin et al. (2018).

A Study on Orbital Forming Analysis of Automotive Hub Bearing using the Explicit Finite Element Method (외연적 유한요소법을 이용한 자동차 Hub Bearing의 Orbital Forming해석에 관한 연구)

  • Cho, Hyun-Jik;Koo, Jeong-Seo;Bae, Won-Rak;Lim, Jong-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, the orbital forming analysis of an automotive hub bearing was studied to predict forming performances using the explicit finite element method. To find an efficient solution technique for the orbital forming, axisymmetric finite element models and 3D solid element models were solved and numerically compared. The time scaling and mass scaling techniques were introduced to reduce the excessive computational time caused by small element size in case of the explicit finite element method. It was found from the numerical simulations on the orbital forming that the axisymmetric element models showed the similar results to the 3D solid element models in forming loads whereas the deformations at the inner race of bearing were quite different. Finally the strains at the inner race of bearing and the forming forces to the peen were measured for the same product of the numerical model by test, and were compared with the 3D solid element results. It was founded that the test results were in good agreements with the numerical ones.

Cognitive behavior intervention for critical incident stress management in fire fighters in Korea (소방공무원의 위기상황 스트레스 관리를 위한 인지행동 개입과 대책)

  • Lee, Eun-Jung;Kim, Jee-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.2
    • /
    • pp.13-18
    • /
    • 2015
  • The purpose of the study is to investigate the predisposing factors of posttraumatic stress disorder (PTSD) in fire fighters in Korea and to suggest the program development and solution to the critical incident stress management (CISM) in the future. PTSD is characterized by invasion, withdrawal, negative change of cognition and mood, and hypersensitivity. Trauma memory includes explicit memory and implicit memory. The explicit memory is conscious, cognitive, and descriptive and is controlled by hippocampus. The data of explicit memory have inhibitive and narrative language structure. The implicit memory is inconscious, emotional, and remembered by the body. The implicit memory is controlled by amygdala and has inexpressive language structure. The deletion of implicit memory is the key point to trauma treatment. Critical incident stress management (CISM) is the approach for the solution of PTSD. In conclusion, the essential goal of CISM is the psychological cessation of PTSD. This study tried to suggest the education program development of PTSD.

NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATION CORRESPONDING TO CONTINUOUS DISTRIBUTIONS

  • Amini, Mohammad;Soheili, Ali Reza;Allahdadi, Mahdi
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.709-720
    • /
    • 2011
  • We obtain special type of differential equations which their solution are random variable with known continuous density function. Stochastic differential equations (SDE) of continuous distributions are determined by the Fokker-Planck theorem. We approximate solution of differential equation with numerical methods such as: the Euler-Maruyama and ten stages explicit Runge-Kutta method, and analysis error prediction statistically. Numerical results, show the performance of the Rung-Kutta method with respect to the Euler-Maruyama. The exponential two parameters, exponential, normal, uniform, beta, gamma and Parreto distributions are considered in this paper.

LEAST SQUARES SOLUTIONS OF THE MATRIX EQUATION AXB = D OVER GENERALIZED REFLEXIVE X

  • Yuan, Yongxin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.471-479
    • /
    • 2008
  • Let $R\;{\in}\;C^{m{\times}m}$ and $S\;{\in}\;C^{n{\times}n}$ be nontrivial unitary involutions, i.e., $R^*\;=\;R\;=\;R^{-1}\;{\neq}\;I_m$ and $S^*\;=\;S\;=\;S^{-1}\;{\neq}\;I_m$. We say that $G\;{\in}\;C^{m{\times}n}$ is a generalized reflexive matrix if RGS = G. The set of all m ${\times}$ n generalized reflexive matrices is denoted by $GRC^{m{\times}n}$. In this paper, an efficient method for the least squares solution $X\;{\in}\;GRC^{m{\times}n}$ of the matrix equation AXB = D with arbitrary coefficient matrices $A\;{\in}\;C^{p{\times}m}$, $B\;{\in}\;C^{n{\times}q}$and the right-hand side $D\;{\in}\;C^{p{\times}q}$ is developed based on the canonical correlation decomposition(CCD) and, an explicit formula for the general solution is presented.

  • PDF

Calculation of Stress Intensity Factors for a Thick Pipe Using Weight Function Method (가중함수법을 이용한 두꺼운 배관의 응력강도계수 계산)

  • Lee, Hyeong-Yeon;Lee, Jae-Han;Yoo, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2167-2173
    • /
    • 1996
  • An approximate weight function technique using the indirect boundary integral equation has been presented for the analysis of stress intensity foactors(SIFs) of a thick pipe. One-term boundary integral was introduced to represent the crack surface displacement field for the displacement based weight function technique. An explicit closed-form SIF solution applicable to symmetric cracked pipes without any modification of the solution including both circumferential and radial cracks has been derived. The necessary information in the analysis is two or three reference SIFs. In most cases the SIF solution were in good agreement with those available in the literature.

ON THE NONLINEAR MATRIX EQUATION $X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q$(0<q≤1)

  • Yin, Xiaoyan;Wen, Ruiping;Fang, Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.739-763
    • /
    • 2014
  • In this paper, the nonlinear matrix equation $$X+\sum_{i=1}^{m}A_i^*X^{-q}A_i=Q(0<q{\leq}1)$$ is investigated. Some necessary conditions and sufficient conditions for the existence of positive definite solutions for the matrix equation are derived. Two iterative methods for the maximal positive definite solution are proposed. A perturbation estimate and an explicit expression for the condition number of the maximal positive definite solution are obtained. The theoretical results are illustrated by numerical examples.

Partial Preconditioning Approach for the Solution of Detailed Kinetics Problems Based on Sensitivity Analysis (효율적인 상세 반응 기구 해석을 위한 민감도 기반의 부분 음해법)

  • Kang, K.H.;Moon, S.Y.;Noh, J.H.;Won, S.H.;Choi, J.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • A partly implicit/quasi-explicit method is introduced for the solution of detailed chemical kinetics with stiff source terms based on the standard fourth-order Runge-Kutta scheme. Present method solves implicitly only the stiff reaction rate equations, whereas the others explicitly. The stiff equations are selected based on the survey of the chemical Jaconian matrix and its Eigenvalues. As an application of the present method constant pressure combustion was analyzed by a detailed mechanism of hydrogen-air combustion with NOx chemistry. The sensitivity analysis reveals that only the 4 species in NOx chemistry has strong stiffness and should be solved implicitly among the 13 species. The implicit solution of the 4 species successfully predicts the entire process with same accuracy and efficiency at half the price.

  • PDF

CONDENSED CRAMER RULE FOR COMPUTING A KIND OF RESTRICTED MATRIX EQUATION

  • Gu, Chao;Xu, Zhaoliang
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1011-1020
    • /
    • 2008
  • The problem of finding Cramer rule for solutions of some restricted linear equation Ax = b has been widely discussed. Recently Wang and Qiao consider the following more general problem AXB = D, $R(X){\subset}T$, $N(X){\supset}\tilde{S}$. They present the solution of above general restricted matrix equation by using generalized inverses and give an explicit expression for the elements of the solution matrix for the matrix equation. In this paper we re-consider the restricted matrix equation and give an equivalent matrix equation to it. Through the equivalent matrix equation, we derive condensed Cramer rule for above restricted matrix equation. As an application, condensed determinantal expressions for $A_{T,S}^{(2)}$ A and $AA_{T,S}^{(2)}$ are established. Based on above results, we present a method for computing the solution of a kind of restricted matrix equation.

  • PDF