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ON THE NONLINEAR MATRIX EQUATION
X+ AJXT94; =Q(0<q<1)

XIAOYAN YIN, RuipING WEN, AND LiANG FANG

ABSTRACT. In this paper, the nonlinear matrix equation

m
X+> AX794;=Q (0<q<1)

i=1
is investigated. Some necessary conditions and sufficient conditions for
the existence of positive definite solutions for the matrix equation are
derived. Two iterative methods for the maximal positive definite solution
are proposed. A perturbation estimate and an explicit expression for the
condition number of the maximal positive definite solution are obtained.
The theoretical results are illustrated by numerical examples.

1. Introduction

In this paper, we consider the following nonlinear matrix equation

m
(1.1) X+) AIXT14;=Q
i=1
where 0 < ¢ < 1, Ay, As, ..., Ap, Q are n X n nonsingular complex matrices

with @ Hermitian positive definite, and A* is the conjugate transpose of a
matrix A. This type of nonlinear matrix equations with m = 1 have many
applications in control theory, dynamic programming, statistics, stochastic fil-
tering, nano research and etc., see for instance [6, 8, 13, 28] and the references
therein. When m > 1, Eq.(1.1) arises in solving a large-scale system of linear
equations in many physical calculations. Following [2], consider a linear system
Mz = f where the positive definite matrix M arises from a finite difference
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approximation to an elliptic partial differential equation. As an example, let

Q 0 -~ 0 A
0 Q -+ 0 A
M=| o
o o0 -+ Q@ An
A Ay - AL Q
We can rewrite M = M + D for
X 0 - 0 A Q-X 0 - 0 0
0o X -+ 0 A 0 R-X - 0 0
M=| : : . i i |.D=| A
0 0 - X A 0 0 - Q-X 0
AT AL - AN Q 0 0O -+ 0 0
Moreover, we can decompose M to the LU decomposition
1 0 0 0 X 0 -+ 0 A
0 1 0 0 0 X --- 0 A
M= : : " : : D o :
0 0 1 0 o o --- X A,
AT X7 AfX—1 ... AN X1 T o o0 --- 0 X

Such a decomposition of M exists if and only if X is a positive definite solution
of the matrix equations X + Y" | A7 X~94; = Q. Solving the linear system
My = f is equivalent to solving two linear systems with a lower and upper
block triangular system matrix. To compute the solution of Mz = f from y,
the Woodbury formula can be applied.

In the last few years there has been a constantly increasing interest in devel-
oping the theory, applications and numerical solutions for the definite solutions
to the nonlinear matrix equations of the form (1.1). When m = 1 and ¢ is a pos-
itive integer, Eq.(1.1) has been extensively investigated by many authors, for
example [8, 12, 16, 18, 25]. In case m = 1 and 0 < ¢ < 1, Hasanov and other au-
thors [9, 10, 24] derived necessary conditions and sufficient conditions for the ex-
istence of positive definite solutions for the matrix equation X £ A*X 94 = Q
and provided iterative methods for obtaining positive definite solutions of these
equations. Inversion free iteration methods for the maximal positive definite
solution for the matrix equation X + A*X~*A = @ with the case 0 < o < 1
and the minimal positive definite solution for X + A* X ~“A = @ with the case
a > 1 can be found in [19, 20]. Whenm > 1, ¢ = 1 and Q = I, He and Long [11]
gave some necessary conditions and sufficient conditions for the existence of a
positive definite solution of Eq.(1.1). Then based on the matrix differentiation,
Duan et al. [4] derived a perturbation bound for the maximal positive definite
solution of X + 7" | A*X~1A; = I. In addition, Duan [3, 5] and Y. Lim [15]
proved that the nonlinear matrix equation X — " | A*X ~74; = @Q always has
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a unique positive definite solution. Similar nonlinear matrix equations such as
X+ A XtA=Q 17,27, X + A F(X)A=Q [21], X" + X | AX X% A; =1
[23] have been investigated by many authors.

Based on these, we continue to study the matrix equation

X + i AXXTI4; = Q
1=1

with 0 < ¢ < 1 and @ Hermite positive definite. In Section 2, we derive some
sufficient conditions and necessary conditions for the matrix equation to have
positive definite solutions. Two iterative methods for obtaining the maximal
positive definite solution are also proposed. Perturbation of the positive definite
solutions is considered in Section 3. We obtain a perturbation estimate and an
explicit expression of the condition number for the maximal positive definite
solution of the matrix equation. Section 4 offers several numerical examples to
illustrate the effectiveness of the theoretical results.

Throughout this paper, we denote by C"™*™ H™*" the set of all nxn complex
matrices, all nxn Hermitian matrices, respectively. The notation A > 0(A > 0)
means that A is Hermitian positive semidefinite (positive definite). We denote
by 01(A) and 0, (A) the maximal and minimal singular values of A, respectively.
Similarly, A1(A4) and A,,(A) stand for the maximal and the minimal eigenvalues
of A, respectively. For A, B € H"*" we write A > B(A > B)if A—B > 0(> 0)
and let

(A,B) = {X|A< X < B}, (A, B]={X|A<X <B}.

For n x n complex matrix A = (a1, as2,...,a,) = (a;;) and a matrix B, A ®
B = (a;; B) is a Kronecker product; vec(A4) is a vector defined by vec(A4) =

(aT,al, ... al)T. Unless otherwise noted, the symbol || - || stands for the

N

Frobenius norm, and || - || the spectral norm (i.e., ||4]] = /p(4AA4*) = 01(4))
and the Euclidean vector norm.

2. Positive definite solutions

In this section, we provide several necessary conditions and sufficient con-
ditions for Eq.(1.1) to have positive definite solutions and also we propose
two iterative methods for obtaining the maximal positive definite solution of
Eq.(1.1).

We start with several lemmas which we need to prove our main results:

Lemma 2.1 ([26]). IfA> B >0 (or A> B > 0), then A" > B" (or A” > B")
for all r € (0,1], and A" < B" (or 0 < A" < B") for all r € [-1,0).

Lemma 2.2 ([1]). Let A, B be positive definite. Then for any unitary invariant
norm ||| - |||, we have
IB*A*B(|| < [|(BAB)'|||, if 0<t<L;
(BAB)'||| < [IIB*A'B'|||, if t>1.
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Lemma 2.3 ([26]). If0 < ¢ <1, and X and Y are positive definite matrices
of the same order with X,Y > bl > 0, then || X7 — Y| < gb? 1| X — Y| and
X7 = Y9 < gb~@HDX — V.
Lemma 2.4 ([28]). If C and P are Hermitian matrices of the same order with
P >0, then CPC + P~ >2C.
Lemma 2.5 ([7]). Let A and B be positive operators on a Hilbert space H such
that My > A>mql >0, Mol > A>mol >0 and 0 < A< B. Then
M M-
At < (ZL1B and A < (=2

)tlet
mi ma

hold for any t > 1.

Lemma 2.6. For any n X n matriz B and positive definite matriz P, we have
M (B*PB) < M\ (P)\(B*B),
M (B*PB) > A\ (P)M\.(B*B).

Proof. Since P > 0, by spectral decomposition theorem, there exists a unitary

matrix U such that P = Udiag(A(P),..., A\ (P))U*. Then A\, (P)I < P <
A1 (P)I. Tt follows that A\, (P)B*B < B*PB < A\ (P)B*B, which gives

M (B*PB) < \(P)\(B*B) and A\, (B*PB) > A\ (P)A(B*B). 0O

Theorem 2.1. If Eq.(1.1) has a positive definite solution X, then for each
i=1,2,...,m, we have

X0 (AQAL Q-3 A1QIA)Y).
=1

The proof is similar to that of Theorem 2.2 in [9] and is omitted here.

Theorem 2.2. If Eq.(1.1) has a positive definite solution X, then

m - - qq
302 (@2 4,Q72) < TEGE and X < pQ,
=1

where 1 is a solution of the equation x4(1 —xz) =Y 7", Ui(Q_Q/QAiQ_l/Q) in

(4.1

q+1

Proof. Consider the following sequence

S ok (QTPAQ7Y?)
.

Obviously, g > 0. Let X be a positive definite solution of Eq.(1.1). Then

X=Q—->" ArX 94, < Q = poQ. Assuming that p; > 0, and X < p1Q,

we have from Lemma 2.1 that

X=Q- i ATXTIA; < Q — Zm: A (eQ) "4,
1=1

=1

:u’0:15 /j/k-‘rl:l_ ) k:OalaQa""
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= 621/2[]'4— ZZ:ZL]VCQ"1/2/1j(2‘*q14i(2—71/2]621/2
i
™02 (QTY2A;Q V2
< Q21— Dim1 (Quq Q )]Q1/2 N
k

which gives pry1 > 0 and X < pr41@Q. Thus pr > 0 and X < pp@ for
k=0,1,2,..., by induction.

It is easy to see that p1 < po. Suppose pp < pp—1. Then pf < pi | and
i oa(Q™92A;,Q71/?) D o2 Q™2 A;Q71?)
— 7 <1l-— — q = Uk
oy Hi—1
which means that sequence {ur} is monotonically decreasing. Notice that
X < @ implies gy > A, (Q~1/2XQ~1/?) for each k = 0,1,2,.... Thus {us}
is convergent. Denote limg_, o p, = p. Then

Zz 1 n(Q q/2A Q 1/2)
uq

i.e., u is a solution of the equation z9(1 — z) = Y1 02(Q~12A4,Q71/?). Tt

follows that

- 2(0-9/2 4.0-1/2) < _ q _ q1
2 oHQTPAQT) < s S0 = 1) = e

where f(x) = 27(1 — x).

Next we show that u € [_45,

M1 =1 —

>0, X <pQ and p=1-

3

1]. Obviously, pop =1 > 7 —L;. Assuming that
e > 77, we have

moo2(QT2A;,Q 12 1 q 1
/LkJrl:l*ZZ_l ( y )217_qq7“>1,—zi
1, py (g + 1) g+1 q+1
Hence pu, > -5 7 for each k =0,1,2,... which implies that u > qqu. O

Consider the following scalar equations:

(2.1) 11 — ) Za (Q124,QY/?),
=1

(2.2) 11 — ) Za (Q™124,QY/?).
=1

Let

flx) =291—2x), z €[0,1].

It is not difficult to know that f(x) is monotonically increasing on [0, =],

monotonically decreasing on [#, 1], and
_ g \_ ¢
aclon] fle) = f(q 1" (q+ 1)att”
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Thus, if

m B B qq
(2.3) ;o%@ 124,Q71?%) < PESIEE

then scalar equations (2.1) and (2.2) have two positive solutions oy, ae(ag <

T < az), and By, B2(f1 < ;L7 < B2), respectively. It is not difficult to verify

that

q
2.4 O<o <B1< ——<Ba<ay<l.
(2.4) ar < B | B2 < an

Note that if (2.3) holds, then aa = p where p is as defined in Theorem 2.2.
Denote the following matrix sets:

1 ={X>0]|50Q <X < (Q},
wo={X >0 52Q < X < a2Q},
3 ={X >0] a2Q < X < Q}.

We have the following theorem:

Theorem 2.3. Suppose that 3 .~ 02(Q~1/2A4;Q1/?) < #. Then
Eq.(1.1)

(i) has no positive definite solution in p1, ps;

(ii) has positive definite solutions in p2; Moreover, if Y v, || A;||*| Q1 ||7Tt <
#, then the positive definite solution in @2 is unique, which is the maxi-
mal positive definite solution.

Proof. (i) Let X be any positive definite solution of Eq.(1.1). Applying Lemma
2.2, we have
1

G Txag T — 19V XTI < VXTI

1
T NQTPXQT)

Combining this with Lemma 2.6, we have

M(Q7VPXQTYR) = Ml = Y QTPAIXTIAQTY)
i=1

=1-M0_Q PAIXTIA,Q7?)
=1

>1-> M@ VPAIXT1A,QT?)
=1

=1- Z )\1(Q—l/2A;‘Q—q/2Qq/zX—qu/zQ—quiQ_l/g)
i=1
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> 1= M(QPX Q%) Y M(QTA;Q1AQ™?)
1=1
Y oi QP AQTY?)
)\n(Q—Q/2XQQ—Q/2)
S, 0t QTP AQ7?)
ST o RTE)

-1-

Thus
D ot QTPAQT) = 1= M (QTVPXQTVA)N(QTVPXQTY),
=1

namely, A, (Q~2XQ71/2) < By or Ay (QY/2XQ7/?) > B,. Thus Eq.(1.1)
has no positive definite solution in ;.
Similarly,

Al(Q_q/QXqQ_Q/Q) — ||Q—q/2XqQ—q/2H < HQ—1/2XQ—1/2H<1
=M(QTPXQ™),

and from Lemma 2.6,

MQTVPXQTVA) = M =) QTVPAIXTI4,Q7?)
=1

=1-00_QPAIX914,Q7?)
=1

m

<1-— Z M (QV2AXQ-92Qu2 X —1Qu/2Q 12 4,Q~1/?)
i=1
< 1= M (QYPX79QY%) > A (Q72A;QT1AQ )
i=1
S eAQPAQ )
T N(Q2XaQ-a?)
<1_ P (I )

SRS GEIE R
Thus,
ZO,Z(Q—q/QAiQ—I/Q) < [1 _ )\1(Q_l/QXQ_l/Q)])\I{(Q_l/QXQ_l/Q).
i=1

Consequently, a3 < \; (Q_l/QXQ_l/Q) < @y, which implies that Eq.(1.1) has
no positive definite solution in 3.
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(ii) Consider the following mapping G :

X)=Q-) Ajx¢
i=1
G is continuous on py. If X € s, then

An(Q72G(X)QT) ZQ VPAIXTIAQT?)
I__ZQ 1/2A* inQ_l/Q]
=1

1 m
2 [l — £ > ot AQTVA)I

i=1

1 m
—1—- = 0_2 7q/2AZ_ -1/2y _ ,
)\1(Q_1/2G(X)Q 1/2 ZQ 1/2A* inQ_1/2)
< )\ - 1/2A* inQ_1/2
I= o g )

<t fii @ 24Q 7)1
0

= _iz Q™92 4,Q7?) = as.

Therefore, £ < Q‘l/QG(X)Q_l/2 < asl and consequently, £2Q < G(X) <
a2@). By Schauder fixed point theorem, we know that G(X) has a fixed point
in 9. That is, Eq.(1.1) has a positive definite solution X in ¢s.

q
Now suppose Y .-, HAZ-||2HQ_1||qul < g Let

q+ 1
_ @)™ - 1||q+12 A2

Then p < 1. Denote
q
Q={X>0: —Q <X <Q|.
{ Q<X <q

Obviously, G(X) = Q — Y% | AT X 14; < Q for any X € Q. It follows from
Lemma 2.1 that

S e
i=1
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> Qe - UED! i QTVPAIQTIAQTIQY?

i
14 ¢q)?
> 0121 ( A, La+1)01/2 <
> Q- = ;n ElQ e > —oq
which gives G(£2) C Q.
Notice that for any X,Y € Q,

xv>-L \or=—3 g
Y2 @O = e

Consequently, we have by Lemma 2.3 that

1G(X) - GY)| = IIZA* (X =Y DA
Z A X~ =Y~

AL ) o 1||‘”1ZIIAH X —v|

which means that G(X) is a contraction on 2. By Banach’s fixed-point theo-
rem, G(X) has a unique fixed point on 2, denoted by X,. That is, Eq.(1.1) has
a unique positive definite solution X in 2. Combining the fact that ¢ C €,
we obtain that X7 € s.

Next, we prove that X, is the maximal positive definite solution of Eq.(1.1).
Let X be an arbitrary positive definite solution of Eq.(1.1). Then X < as@Q
according to Theorem 2.2. Since G(X) is monotonically increasing, then

X = G(X) < G(Q), X =GF(X) < GF Q) — X1, k — 0.

Thus X < X which means that X, is the maximal positive definite solution
of Eq.(1.1). O

Remark 2.1. From the proof of Theorem 2.3(ii), we know that if

m q
A 21O et < q :
;:1 [ A lI|Q] Gt

then the maximal positive definite solution Xy, is the unique positive definite
solution of Eq.(1.1) satisfying X > #Q.

Corollary 2.1. If Y7 || A;|?|Q 7™ <
definite solution X satisfies

#, then the maximal positive

X2 <(1+ Q™.
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Moreover, for any other positive definite solution X of Eq.(1.1), we have
_ 1 _
X~ > @+ a)I\QH g

Proof. Since 1" | Ai|*[lQ et < #, then the maximal positive defi-
nite solution X, exists and satisfies X, > 52Q > #1@ according to Theorem
2.3. Thus X;' < (1+ %)Q_l which gives || X1 < (1 + %)HQ‘lﬂ
Let X # X, be any positive definite solution to Eq.(1.1). Then
Ay -1/2x0~1/2) < < q
@xQ7) <<

from the proof of Theorem 2.3(i) and consequently || X ~![| = A, 1(X) > (1 +
D@7 =1+l .

Next we give two iterative methods for the maximal positive definite solution
Xr .

As first method we consider the following fixed point iteration:
{ Xo :’YQa Y€ [,U/a 1]a

X1 = Q — XLy ATX A,

where p is as defined in Theorem 2.2.

(2.5)

Theorem 2.4. If Eq.(1.1) has a positive definite solution, then the sequence
{ X} in iteration (2.5) is monotonically decreasing and converges to the maz-
imal positive definite solution Xp,.

Proof. Let X be a positive definite solution of Eq.(1.1). Then Xy = vQ >
1@ > X according to Theorem 2.2. Assuming that X;_; > X, we have

Xp=Q—- Y AX 1A >Q-Y AX 94 =X,
i=1 i=1
Hence X}, > X for each £k =0,1,2,....
Similarly, we prove that the sequence {X}} is monotonically decreasing by
induction.

X1=Q-> ArX;4
=1

=Q->_AI(Q) 4

i=1
Zz Q_l/QA’;Q_inQ_l/Q
— Q21 — &=L = jQ'?
<QV2(1 - 2in1 ‘7721(6’27(1/2‘41'6’271/2))621/2 <7Q = Xo,

fyq
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where the last inequality holds since

VA=) Spl-p) =3 on(@PAQT).

i=1
In fact, this can be obtained from the decreasing property of f(z) = x(1 — z)
in [q%l, 1] and the fact that q% < pu <~ <1. Suppose X < Xi_1. Then

m m
Xpp1 = Q=Y AIX A <Q =D AIX, A = Xy,
i=1 i=1
which implies that the sequence { X} } is monotonically decreasing. Hence { X}
is convergent. Denote limy_o X = X;. Then X; > X for any positive definite
solution X which gives X; = X. O

Our next algorithm is an inversion-free iteration:

YO = (’YQ)ila gaS [/’La 1]5
(2.6) Xe=Q— Y1 AV A,
Y1 = Yi(2I — XYy),

where p is as defined in Theorem 2.2.

Theorem 2.5. If Eq.(1.1) has a positive definite solution, then the sequences
{X%} and {Yi} from (2.6) satisfy

Xo>X1>Xo>, lim Xp=Xp; Yo<Vi<Yo<---, lim Yy =X;",

k—o0 k—o0

where X, is the mazimal positive definite solution of Eq.(1.1).

Proof. Let X be a positive definite solution of Eq.(1.1). Then X < @ accord-
ing to Theorem 2.2. Combining this with Lemma 2.1, we obtain that

Yo=0(Q) ' <)t <X
Xo=Q—-Y AViA>Q-> AjX 94, =X.
=1 =1
By Lemma 2.4, we have
Vi =2V, - YoXoYo < Xyt < XL
Since

TLA* T9A;
Xo :Q_Zilaq

i=1

<y, WOAC Dge < g -y

i=1 v
from the definition of ~y, then
Yy =Yy =Yy — Yo XY = Yo[¥y ' — Xo]Yo > 0.
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It follows that
X1 =Q- > AVA>Q-Y AIX A =X
i=1 i=1
and
Xi—Xo=Y A[YJA - > AVJA =) Aj(Y - V{)A; <.
i=1 i=1 i=1
Hence X < X; < Xpand Yo <Y; < XL Assuming that
X<Xp<Xpo1, iea <V <X k=2.3,...
we have
Vi =2V — Y1 Xp 1Y < X < XY
Vi1 =2V, — Ve Xp Yy, < X P < X0,

Xpep1 =Q =Y AV A >Q - AIX94; = X,
i=1 =1

and consequently,

Yigr = Y = Ve (Vi = Xe)Vi 2 0, Xppy — X = Y ANV = Vi, A < 0.
i=1

Hence we have by induction that Xg > X7 > X9 > -+ > X} > X and

Vo <V <Y, < - <Y, < X! hold for each £ = 0,1,2,... and so

) Y )

the sequences {X}} and {Y;} are convergent. Denote limjy_,o, X = X; and
limg_o0 Y3 = Y. Taking limit in the iteration (2.6) leads to Y = Xfl and
X =Q—>", ArX;9A;. Moreover, since X > X,k = 1,2,3,... for any
positive definite solution X, we have X; = X. O

Theorem 2.6. If Eq.(1.1) has a positive definite solution and after k iterative
steps of iteration (2.6), we have ||[I — X;Yy|| < €, then
Xk + Y ATX74 = Q) < eqad (@) Y || A7,
i=1 i=1

where o = min{A\Y 7 (A,Q T ANN TV A,Q71AY) i =1,2,...,m}.

Proof. According to Theorem 2.1, we have X} > 4;Q7'Af > 0 for each i =
1,2,...,m. Denote m; = A\, (A;Q *AY) and M; = A\ (A;Q tA}). From the
proof of Theorem 2.5, we have

1
M@HDNI<ET<-Q =<V <X '<X; .
v

Then we obtain that
IXe? =Yl < g MTHQTHIXT = Yall = ¢- M TUQIX = Vil
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from Lemma 2.3, and

Lot < xpt < xpt < (g, az) /e
aé m;
< MMl =12,
from Lemma 2.5. Since

Xk + ZAfX,;in —Q=Xp— Xpp1 + ZA;*(XIZ‘I V) A

i=1 i=1

I
.MS

-
Il
—

=1

.

N
Il
-

A;‘(Xk_q — qu)Ai.
Then we have

X0+ > ATX A= QL = 1 ) AT (X - YA
i=1 i=1
<D IAlPIX T =Y
i=1

<anTUQ) D IANIX - Yl
=1

m

1— —
< e TUQ) D IANPIX I — XY
i=1

< egA} (@) > 1A )
=1
< g\ QMY T mi TN | A2
=1
< eqar; Q) Y |14,
=1

where a = min{An 79(A4,Q AN/ THA,Q71AY) i =1,2,...,m}.

3. Perturbation estimates for X,

Consider the perturbed matrix equation

(3.1) X+ A'X 14, =Q,

Ai(YlL, - YDA+ Z AL(X =Yl A

751
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where A; and Q are the slightly perturbed matrices of the matrices A; and Q,
respectively. In this section, we show that if ||A; — A|| and ||Q — Q|| are suffi-
ciently small, then the maximal solution X, to the perturbed matrix equation
(3.1) exists. We derive a perturbation estimate for the maximal positive defi-
nite solution X and give an explicit expression of the Rice condition number
of XL .

Denote AQ=Q —Q, AX =X, — X1, AA; = A, — A;,i=1,2,....m

Theorem 3.1. Let

(3.2) (i) 0:= ZIIA Pl > o,

(¢+ 1 atl
1
(3.3) (i) AQ| < === - (1= "V1-40),
Q1
moo +1)atl — ga
( ) 111 ; || || ” H ) (q+ 1)q+1HQ_1||q+1

Then nonlinear matricz equations
m ~ m N ~ N ~
X+ ZA;‘X_‘?AZ- =Q and X + ZAi X794, =Q
= i=1
have mazimal positive definite solutions X and X, respectively. Moreover,

(35) IIAX]| < 1 (HAQ||+QZ||X 1Al - 1AA; H+Z||X - [1AA]P),
i=1 i=1

where
=1—qb(atD) /L 2 ph= 7 min{ A, (Q), \n Q .
§ q ;1 A% g+ 1 in{An(Q), M\ (Q)}

Proof. Since 6 > 0, we know from Theorem 2.3 that Eq.(1.1) has the maximal
positive definite solution X, € [2Q), a2@Q)]. Notice that § < 1 and

QM < QI+~ - ARl - IR~ < Q7 I+ (1 = “VI-0)lIQ~ I,

which gives

eyt

1q+1
12 —

Consequently, we have

Z LA P Q|+

||Q 1” ot i HA ||2 (Q+ 1)q+1 B qq 0
(¢ + 1)arH|Q— ot
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_ i@+ DT ANPQTHIT + [(¢ + )T — ¢7)0
N (1=0)(g+1)7tt

q+1 q+1
_ q? ,Z 2 lAs I\Q(q“) Q- 1H‘”1+[7(‘”1) 1]¢
(q+1)att 1-¢
_ 4
36) = TESER

Applying Theorem 2.3, we obtain that the perturbed matrix equation (3.1)
has the maximal positive definite solution X € [BgQ,de], where 35 and
@iz are the biggest positive solutions of the polynomial equations z4(1 — z) =
S 0 QP AQ ) and 29(1 — 1) = ST, 02 (Q-U2A,Q11?), respec-
tively.

In the following, we show the estimate (3.5):

Since X > 52Q > LA(Q) and X > B2Q > (@)1 Let b =

ZHmin{\,(Q) An(Q)}. Then X, X1, > bI and consequently,
XL = X7 < b~ @V AX]|

from Lemma 2.3. B B

Since Xr + >t Ar X[ %A; = Q and Xp + Y10, A X[ 7A; = Q, then

Xp—Xp+ > AX[9A; =Y ATX[7A;=Q - Q,
i=1

i=1

ie.,
AX = AQ + ifii*(XEq — XA + Z ATX[9A; — ZA*
i=1 i=1
= AQ+ i AT(X[T— XA — i AATX[ A,
=1 1=1
iA TINA; — ZA* TIAA;.
Hence .

IAX] < AQI + A5 (X" = X DAl + ) IAATX 44|

i=1

+ D NAAIXIAA + Y AT X TAA

i=1

< AQI+IXZ = XL IAlP + > 1A X A4
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+2 i A4 X774
< 1AQI + gD IAX] S AR + 23 XA - [AA
=1 =1
FY X A

i=1

Denote € = 1 — gb~(@+D) 3™ || A4;]|2. Notice from the proof of (3.6) that
Q
St e < 3 1

1O [y (g 1) g
L A; 0
<o |2 M e

1” ot |A H2

¢t
NVESCE
Then

gb~ Y Z 1412

q+
_ { q- <q;hl Q7M™ S, A2 < 1 if b= 75 0(Q),
- q+1 ~
g L QYT A2 < 1 if b= L M(Q).
Therefore, £ > 0 and we have

1AaX]| < z - (1AQ] +22 XL Adll - [AA]] +Z XL 11AA]?)
=1 1=1
By the theory of condition number developed by Rice [22], we give in this
following an explicit expression of the condition number of the maximal positive
definite solution X7, .

The complex case.

Lemma 3.1 ([14]). Let X be any n x n positive definite matriz, 0 < ¢ < 1.
Then .

(i) X719 =212 fooo()\l + X)TIAT9d),

(if) X ~9 = ST [N+ X)TLX (A + X)TIA A

From Theorem 3.1, we see that if ||(A~Al, ooy AAL, AQ)| Fois sufficiently

small, then the maximal positive solution Xy, to the perturbed matrix equation
(3.1) exists. Subtracting (1.1) from (3.1) gives rise to

AX + Y [ATX A - ATX A = AQ,

=1
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ie.,
AX + i[A;f (X7 X, DA+ A (X7 X7 )AA;
=1
+AAT(X T - XA
(37) =AQ- i[(AA;‘XL_in +AAXIAA + ATXIAA)).

i=1

Applying Lemma 3.1, we have

™

(3.8)
XL—Q _ qu
_ qu”/ [T+ X1 + AX) ™ — (AT + X 1) JA4dA
m 0
— qu”/ ~(M + X1)T"AX (M + X1 4+ AX) "IN 9dA
m 0
- qu”/ —(M 4+ X)"'AX (M + X1)7IAT%dA
T 0
singm [ -1 -1 —1y—
A+ X)) "AXAT + X 4+ AX) PAX (M + X1) 'A%
a 0
Combining (3.8) with (3.7), we obtain that
(3.9)
Singm .= [ ., 1 —14 y—
AX — S| AT+ Xp)TPAX (M + Xp) T AN AN = E + h(AX),
i=170

where E = AQ — Y7 [(AA* X[ TA; + AATX[IAA; + AP X IAA,)],
h(AX)

. m
s o0
= -2 Z[Ai‘/ (M + Xp)TPAX (M + Xp + AX)TTAX (A + X1)TIAT9dAA;
™ ; 0
=1

. m 00
+ =314 / (A +X1)TPAX (A + X, + AX)TIAT9dAA A,
™ i—1 0

+ AA;*/ (M + X1) TP AX (M + X1, + AX)TIAT9dAA;).
0

Lemma 3.2. Let Y ;», | A;|*|Q||7H < #. Then the linear operator
L: H""™ — H™™ defined by

sin gm

(3.10) LW =W —

™

Z/ AN+ X)) "W + Xp) 7t AA2dA
i=170

18 invertible.
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Proof. 1t suffices to show that for any matrix V- € H"*™, the following equation
(3.11) Lw=V

has a unique solution. Define the operator M : H™*™ — H"*" by

. m
M sin g7 oo
Z= : Z/ XL_l/QAj(/\I+XL)_1)(%/2ZX£/2(/\I+XL)—1141.)('L—l/?/\—qd/\7
™ 0
i=1

Z e H™ ",
Let Y = X, WX, '/?. Thus (3.11) is equivalent to
(3.12) Y -MY = Xx; Pvx; 2
Notice that || X} '] < %HQ*H. According to Lemma 3.1(ii), we have

MY
_ ||sin ﬂz/o X7V AT N+ X)X Py XA+ X ) AX 2 d)|
=1

< HZS“]%/O X VPATN + X0) T XD (M + X)) 7 A X AATd) |
i=1

= Y] 1¥q X, A Si;‘%/m(M+XL)*1XL(M+XL)71quA AX
i=1 JO

U N —1/2
=Y |- I X,PAarx A x|

i=1

u —q/2 —1/2
<qlY| - SIX; AP

i=1
< gV Sl AlP X
i=1

< gllYl- SlAd
i=1 q
Then ||M|| < 1 which implies that I—M is invertible. Therefore, for any matrix
V € H™*™ equation (3.12) has a unique solution Y. Thus equation (3.11) has
a unique solution W for any V' € H™*™ which implies that the operator L is
invertible. The proof is then completed. (]

THQTHIH < Y-

Let B, = X;7A;,1=1,2,...,m. We can rewrite (3.9) as
AX = X1 — X,

=L 1AQ - iB;*AAZ- - i AAIB)
=1

i=1 i =

—L' ) AAIXIAA) + LT (h(AX)).
=1
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Then we have
(3.13)

AX =X, — X,
=L (AQ - BIAA - ) AAIB)+ O(|(AAs, ..., A4, AQ)|7)
i=1 i=1
(AAy,...,AA,,, AQ) — 0. By Rice’s condition number theory [22], we define
the condition number of the maximal positive definite solution Xy, of Eq.(1.1)
as follows:

AX
(3.14) C(X1) = lim sup | 5HF’
0y, S B

AAieCan7AQ6Han

where &, p, 1, ..., pu are positive parameters. Taking &€ = p =y = -+ =
tm = 1 in (3.14) gives the absolute condition number C,ps(X) and takin
E=XLllr, p=QIF, i = |Aillr, i = 1,2, ..., m gives the relative condition
number Cio(X1).

Substituting (3.13) into (3.14), we get

1 ILTHAQ — 7 (Bf AA; + AAB)))||»
C(Xp) = - max =117 ¢
T B o 185, Bae Q)]

wyr wm ' p L L
AA;ECnXn AQEHN XN

_L e ITeH - (BB + BBl
§ Byt [(Br, s B D)7
E;eCnxn HeHn*n
_L I e H A B (- )+ S () Billlre
e 1 (=B, =B, H)lr
E;eCnxn HeHnXn
_1 .- L~ [pH + 37 (B K, + K;By)) | r
§ UK 1K1y Ko, H)|[ '

KiGCan7H€HTL><TL
Let L be the matrix of the operator L. Then it is not difficult to see that

L:I@I—Sln

an Z/ (M + X2) " A7 @ [(M + X) " A;]" A~ 9dA.
T~ Jo

i=1

Denote by 7 = vec(H) = a + jb, w; = vec(K;) = u® + jo) where
a,b,u® v € R"* and j is the imaginary unit. Let

g1
(1)

. . 92
glz(Z)vgél):(in;)a7::1527"'7mvg: : )
g5
L'I®B)=L""I®(X;%4,))=0" 400 i=1,2... m,
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LB oNI=L""((X;74) e DI =U" + 08, i=1,2,...,m,

where Ul(i), 2(1'), Qgi), Qg) € R”ZX"2, and IT is the vec-permutation matrix,
such that vec(KT) = IIvecK. Denote

L =S+, 5% e R,
5 = { S -x } U _ o + U)ol —af .
) S » Y ng) + ng) Ul(z) . U2(z)
Then we obtain that

C(Xyr)

1 L~ [pH+3 | s (B Ki+ K B)lllr
T(K1r Ko D) 7

= l max llpL ™ vec(H)+307 3 i L™ vec(B Ki+ K[ Bi)||
€ Ky Koo H)#0 Ilvec(Ky,-... Kom H)]
K;eCnxn HeHnxn
_1 max llpL = vec(H)+ 37 | il L~ (I®B; )vec(K;)+L~ (BT @I)vec(K;)]||
=z vec(K1 ..., K, H)l

m i (1)
lose (545, v ()1

vec(K1,.., K, H)||

1
- max
& Ky Km, H)#0

_ l max [[pScgr1+>207" ”iUc(i)géi)H
- 4 llgll
g (g1,gél),___7gé ))7’50

1 Se, U(l) _____ mU(m) 1 i
= g mapc Hemeiefiuptn Bl = 2 (oS iU, U

Theorem 3.2. Let Y ", [|A:|*|Q||*F < #. Then the condition
number C(X1) defined by (3.14) has the following explicit expression

(3.15) O(X1) = 2[(pSe, i UD, o pn US|,

1
=l
3
where S, Uc(i),i =1,2,...,m are defined as above.

Remark 3.1. From (3.15), we have the relative condition number

|QUIrSe, A1 UL, ..., [ Awll 2 UE™ )]
[ XLlF

(3.16) Cra(X1) = I

The real case

Next we consider the real case, i.e., all the coefficient matrices A1, ..., A, Q
of Eq.(1.1) are real. In such a case the corresponding maximal solution X7, is
also real. Similar to Theorem 3.2, we obtain the following theorem.
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Theorem 3.3. Let Ay,..., A, Q be real. Suppose that
> IAdEIQ I < T
(2 +1°
P (q+ 1)
Then the condition number C(Xr) defined by (3.14) has the explicit expression

(317) C(XL) = (pST;,U/lUf,Sl)a7/j/mU7Em))||’

|
13
where

sin

Spr=[I®I-—
v

TS~ [ 1T+ X0) T AT w0 (AT 4+ X0) ATA AN
i=170
UYD =8, [Io(ATX; )+ (ATX; Yo DI, i=1,2,...,m.
Remark 3.2. In the real case the relative condition number is given by

1 m
_ 1dQUeSr AU, . 1A U™ |
1 XLllF

4. Numerical experiments

(3.18) Crel(X1)

In this section, some simple examples are given to illustrate the results of
the previous sections. All the tests are carried out using MATLAB 7.1 with
machine precision around 10716, The practical stopping criterion used is the
residual || X + Y70, A7 X 794, — Q|| < 10710,

Example 4.1. Counsider Eq.(1.1) with the case m = 2, ¢ = 0.3, and the
matrices Ay, As and @Q as follows:

—-0.45 045 08 -12 0.75
0.55 1.05 04 075 0.9
A= -09 095 =07 08 -09 |,
0.7 —-08 04 0.7 0.75
025 065 0.7 —0.6 0.65

—-0.54 057 1.02 -1.35 0.93
0.69 1.26 0.1 0.63 1.11
Ay=1| —-1.08 1.14 087 1.02 -—-1.11 |,
087 —-1.02 0.51 0.84 0.93
033 081 093 -0.72 0.78

68.6 28.8 21.2 25.2 21.6
288 524 9.6 10.8 204
Q=1 212 9.6 38.0 12.0 13.2
25.2 108 12.0 489 9.6
21.6 204 132 9.6 404

By computation, (||A1|* + [|42)*)|Q 9™ = 0.3019 < (q—+‘{;qﬁ = 0.4955,

#1 = 0.2308, B2 = 0.8164 and as = 0.9992. According to Theorem 2.5, take
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v = 1, using iteration (2.6) and iterating 8 steps, then we get the maximal
positive definite solution to Eq.(1.1):

66.8612 29.6685 20.3249 24.7669 20.0718
29.6685 49.7674 9.6956 10.7331 20.6371
X~ Xg=| 203249 9.6956 36.3003 13.3999 11.2874
24.7669 10.7331 13.3999 45.7122 10.4319
20.0718 20.6371 11.2874 10.4319 37.8838

with the residual [|Xg + > v A*X %A — Q| = 8.4947e — 012. Moreover,
from A, (Xs — $2Q) = 0.2338 and \,(2Q — Xg) = 0.0012, we know that

X1 € [32Q, x2Q)].
Example 4.2. Let

1 0 0 0 1
11 0 o0 1

A+ A

A:? 1 -1 1 o0 1|, B= +2 ,
Sl 1 -1 -1 011

-1 -1 -1 -1 1
¢=0.5, X =diag(0.725,2,3,2,1), Q = X + A*X %A+ B*X 4B,
Consider the perturbed matrix equation
X+ XA+ BIXTUB, =
where ¢; = 0.1%, A; = A+¢;(I+E), Bj=B+¢;(I+2E) X; =X +¢;(1—
E), Qj=X;+ A X "A; + B; X "B;, with

111 11
111 11
EFE=|11 1 11
11 1 11
11 1 11

Now we compute the perturbation bounds for Eq.(1.1).

By computation, (||A]|? + [|B||?)||Q~[|4Tt = 0.0286 < # = 0.3849
and A, (X — q%Q) = 0.4804 > 0 which implies that X = X from Remark
2.1. Obviously, X ;j are positive definite solutions of the perturbed matrix equa-
tions X + fl;ff(’qflj + B}‘X*qéj = Qj. Moreover, it is not difficult to verify
that the corresponding equations X + A;X*qflj + B;-‘X*qéj = Qj and Xj
satisfy the assumption (||A4;||? + |\Bj||2)|\6,~2;1|\q+1 < # and the condi-
tions A\, (X, — q%Qj) > 0 for each 7 = 1,2,3,4,5. Thus by Remark 2.1,
X; ( =1,2,...,5) are the maximal positive definite solutions of the corre-
sponding perturbed matrix equations, respectively. We denote Xi=X i and
let AXW = X% — Xp. All the conditions of Theorem 3.1 are satisfied for
7 =1,2,3,4,5. The results are given in the following table.
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j=1 Jj=2 Jj=3 j=4 J=5
true error I2X510 00133 1.3333¢-004 1.3333¢—006 1.3333¢—008 1.3333¢—010
our result (3.5) _ 0.0277 2.4599¢—004 2.4581e—006 2.4581e—008 2.4581¢—010

Example 4.3. Consider Eq.(1.1) with ¢ = 0.5 and

(0 (0 a (11 0
Al_(o 0)’ AQ_(O 0)’ Q_( 0 1.2)’

where a; = 0.25+107% and az = 0.35+107%. Denote § = >, [|A;]|?|Q |9}
7#. Results for Cye1(Xz) by (3.18) with different vales of k are listed
below where Cye1(X},) is the relative condition number of the maximal positive
definite solution.
k 1 2 3 4 5 6
0 —0.1032 —0.2140 -0.2235 —-0.2244 —0.2245 —0.2245
Crel(X1) 1.2588 1.1452 1.1362 1.1353 1.1352 1.1352

From the numerical results in the second line, we see that the condition of
Theorem 3.3 is always satisfied for each k = 1,2,...,6. The numerical results
listed in the third line show that the maximal positive definite solution X7, is
well-conditioned in such cases.
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