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ON THE NONLINEAR MATRIX EQUATION

X +
∑m

i=1
A∗

iX
−qAi = Q(0 < q ≤ 1)

Xiaoyan Yin, Ruiping Wen, and Liang Fang

Abstract. In this paper, the nonlinear matrix equation

X +
m∑

i=1

A∗
iX

−qAi = Q (0 < q ≤ 1)

is investigated. Some necessary conditions and sufficient conditions for
the existence of positive definite solutions for the matrix equation are
derived. Two iterative methods for the maximal positive definite solution
are proposed. A perturbation estimate and an explicit expression for the
condition number of the maximal positive definite solution are obtained.
The theoretical results are illustrated by numerical examples.

1. Introduction

In this paper, we consider the following nonlinear matrix equation

(1.1) X +

m
∑

i=1

A∗
iX

−qAi = Q

where 0 < q ≤ 1, A1, A2, . . . , Am, Q are n × n nonsingular complex matrices
with Q Hermitian positive definite, and A∗ is the conjugate transpose of a
matrix A. This type of nonlinear matrix equations with m = 1 have many
applications in control theory, dynamic programming, statistics, stochastic fil-
tering, nano research and etc., see for instance [6, 8, 13, 28] and the references
therein. When m > 1, Eq.(1.1) arises in solving a large-scale system of linear
equations in many physical calculations. Following [2], consider a linear system
Mx = f where the positive definite matrix M arises from a finite difference
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approximation to an elliptic partial differential equation. As an example, let

M =















Q 0 · · · 0 A1

0 Q · · · 0 A2

...
...

. . .
...

...
0 0 · · · Q Am

A∗
1 A∗

2 · · · A∗
m Q















.

We can rewrite M = M̃ +D for

M̃ =















X 0 · · · 0 A1

0 X · · · 0 A2

...
...

. . .
...

...
0 0 · · · X Am

A∗
1 A∗

2 · · · A∗
m Q















, D =















Q−X 0 · · · 0 0
0 Q−X · · · 0 0
...

...
. . .

...
...

0 0 · · · Q−X 0
0 0 · · · 0 0















.

Moreover, we can decompose M̃ to the LU decomposition

M̃ =















I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0
A∗

1X
−q A∗

2X
−q · · · A∗

mX−q I





























X 0 · · · 0 A1

0 X · · · 0 A2

...
...

. . .
...

...
0 0 · · · X Am

0 0 · · · 0 X















.

Such a decomposition of M̃ exists if and only if X is a positive definite solution
of the matrix equations X +

∑m
i=1 A

∗
iX

−qAi = Q. Solving the linear system

M̃y = f is equivalent to solving two linear systems with a lower and upper
block triangular system matrix. To compute the solution of Mx = f from y,
the Woodbury formula can be applied.

In the last few years there has been a constantly increasing interest in devel-
oping the theory, applications and numerical solutions for the definite solutions
to the nonlinear matrix equations of the form (1.1). Whenm = 1 and q is a pos-
itive integer, Eq.(1.1) has been extensively investigated by many authors, for
example [8, 12, 16, 18, 25]. In casem = 1 and 0 < q ≤ 1, Hasanov and other au-
thors [9, 10, 24] derived necessary conditions and sufficient conditions for the ex-
istence of positive definite solutions for the matrix equation X±A∗X−qA = Q

and provided iterative methods for obtaining positive definite solutions of these
equations. Inversion free iteration methods for the maximal positive definite
solution for the matrix equation X + A∗X−αA = Q with the case 0 < α ≤ 1
and the minimal positive definite solution for X+A∗X−αA = Q with the case
α ≥ 1 can be found in [19, 20]. Whenm ≥ 1, q = 1 andQ = I, He and Long [11]
gave some necessary conditions and sufficient conditions for the existence of a
positive definite solution of Eq.(1.1). Then based on the matrix differentiation,
Duan et al. [4] derived a perturbation bound for the maximal positive definite
solution of X +

∑m
i=1 A

∗
iX

−1Ai = I. In addition, Duan [3, 5] and Y. Lim [15]
proved that the nonlinear matrix equation X−∑m

i=1 A
∗
iX

−qAi = Q always has
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a unique positive definite solution. Similar nonlinear matrix equations such as
Xs ±A∗X−tA = Q [17, 27], X +A∗F (X)A = Q [21], Xr +Σm

i=1A
∗
iX

δiAi = I

[23] have been investigated by many authors.
Based on these, we continue to study the matrix equation

X +

m
∑

i=1

A∗
iX

−qAi = Q

with 0 < q ≤ 1 and Q Hermite positive definite. In Section 2, we derive some
sufficient conditions and necessary conditions for the matrix equation to have
positive definite solutions. Two iterative methods for obtaining the maximal
positive definite solution are also proposed. Perturbation of the positive definite
solutions is considered in Section 3. We obtain a perturbation estimate and an
explicit expression of the condition number for the maximal positive definite
solution of the matrix equation. Section 4 offers several numerical examples to
illustrate the effectiveness of the theoretical results.

Throughout this paper, we denote by Cn×n, Hn×n the set of all n×n complex
matrices, all n×n Hermitian matrices, respectively. The notation A ≥ 0(A > 0)
means that A is Hermitian positive semidefinite (positive definite). We denote
by σ1(A) and σn(A) the maximal and minimal singular values of A, respectively.
Similarly, λ1(A) and λn(A) stand for the maximal and the minimal eigenvalues
of A, respectively. For A,B ∈ Hn×n, we write A ≥ B(A > B) if A−B ≥ 0(> 0)
and let

(A,B) = {X |A < X < B}, (A,B] = {X |A < X ≤ B}.
For n × n complex matrix A = (a1, a2, . . . , an) = (aij) and a matrix B, A ⊗
B = (aijB) is a Kronecker product; vec(A) is a vector defined by vec(A) =
(aT1 , a

T
2 , . . . , a

T
n )

T . Unless otherwise noted, the symbol ‖ · ‖F stands for the

Frobenius norm, and ‖ · ‖ the spectral norm (i.e., ‖A‖ =
√

ρ(AA∗) = σ1(A))
and the Euclidean vector norm.

2. Positive definite solutions

In this section, we provide several necessary conditions and sufficient con-
ditions for Eq.(1.1) to have positive definite solutions and also we propose
two iterative methods for obtaining the maximal positive definite solution of
Eq.(1.1).

We start with several lemmas which we need to prove our main results:

Lemma 2.1 ([26]). If A > B > 0 (or A ≥ B > 0), then Ar > Br (or Ar ≥ Br)
for all r ∈ (0, 1], and Ar < Br (or 0 < Ar ≤ Br) for all r ∈ [−1, 0).

Lemma 2.2 ([1]). Let A,B be positive definite. Then for any unitary invariant

norm |‖ · |‖, we have

|‖BtAtBt|‖ ≤ |‖(BAB)t|‖, if 0 ≤ t ≤ 1;

|‖(BAB)t|‖ ≤ |‖BtAtBt|‖, if t ≥ 1.
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Lemma 2.3 ([26]). If 0 < q ≤ 1, and X and Y are positive definite matrices

of the same order with X,Y ≥ bI > 0, then ‖Xq − Y q‖ ≤ qbq−1‖X − Y ‖ and

‖X−q − Y −q‖ ≤ qb−(q+1)‖X − Y ‖.
Lemma 2.4 ([28]). If C and P are Hermitian matrices of the same order with

P > 0, then CPC + P−1 ≥ 2C.

Lemma 2.5 ([7]). Let A and B be positive operators on a Hilbert space H such

that M1I ≥ A ≥ m1I > 0, M2I ≥ A ≥ m2I > 0 and 0 < A ≤ B. Then

At ≤ (
M1

m1
)t−1Bt and At ≤ (

M2

m2
)t−1Bt

hold for any t ≥ 1.

Lemma 2.6. For any n× n matrix B and positive definite matrix P , we have

λ1(B
∗PB) ≤ λ1(P )λ1(B

∗B),

λn(B
∗PB) ≥ λn(P )λn(B

∗B).

Proof. Since P > 0, by spectral decomposition theorem, there exists a unitary
matrix U such that P = Udiag(λ1(P ), . . . , λn(P ))U∗. Then λn(P )I ≤ P ≤
λ1(P )I. It follows that λn(P )B∗B ≤ B∗PB ≤ λ1(P )B∗B, which gives

λ1(B
∗PB) ≤ λ1(P )λ1(B

∗B) and λn(B
∗PB) ≥ λn(P )λn(B

∗B). �

Theorem 2.1. If Eq.(1.1) has a positive definite solution X, then for each

i = 1, 2, . . . ,m, we have

Xq ∈ (AiQ
−1A∗

i , (Q−
m
∑

i=1

A∗
iQ

−qAi)
q).

The proof is similar to that of Theorem 2.2 in [9] and is omitted here.

Theorem 2.2. If Eq.(1.1) has a positive definite solution X, then

m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2) ≤ qq

(q + 1)q+1
and X ≤ µQ,

where µ is a solution of the equation xq(1 − x) =
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2) in

[ q
q+1 , 1].

Proof. Consider the following sequence

µ0 = 1, µk+1 = 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

µ
q
k

, k = 0, 1, 2, . . . .

Obviously, µ0 > 0. Let X be a positive definite solution of Eq.(1.1). Then
X = Q −∑m

i=1 A
∗
iX

−qAi < Q = µ0Q. Assuming that µk > 0, and X < µkQ,
we have from Lemma 2.1 that

X = Q−
m
∑

i=1

A∗
iX

−qAi < Q−
m
∑

i=1

A∗
i (µkQ)−qAi
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= Q1/2[I −
∑m

i=1 Q
−1/2A∗

iQ
−qAiQ

−1/2

µ
q
k

]Q1/2

≤ Q1/2[1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

µ
q
k

]Q1/2 = µk+1Q.

which gives µk+1 > 0 and X < µk+1Q. Thus µk > 0 and X < µkQ for
k = 0, 1, 2, . . . , by induction.

It is easy to see that µ1 < µ0. Suppose µk < µk−1. Then µ
q
k < µ

q
k−1 and

µk+1 = 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

µ
q
k

< 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

µ
q
k−1

= µk

which means that sequence {µk} is monotonically decreasing. Notice that
X < µkQ implies µk > λn(Q

−1/2XQ−1/2) for each k = 0, 1, 2, . . .. Thus {µk}
is convergent. Denote limk→∞ µk = µ. Then

µ > 0, X ≤ µQ and µ = 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

µq
,

i.e., µ is a solution of the equation xq(1 − x) =
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2). It

follows that
m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2) ≤ max

x∈[0,1]
f(x) = f(

q

q + 1
) =

qq

(q + 1)q+1
,

where f(x) = xq(1 − x).
Next we show that µ ∈ [ q

q+1 , 1]. Obviously, µ0 = 1 > q
q+1 . Assuming that

µk > q
q+1 , we have

µk+1 = 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

µ
q
k

≥ 1− 1

µ
q
k

qq

(q + 1)q+1
> 1− 1

q + 1
=

q

q + 1
.

Hence µk > q
q+1 for each k = 0, 1, 2, . . . which implies that µ ≥ q

q+1 . �

Consider the following scalar equations:

(2.1) xq(1− x) =

m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2),

(2.2) xq(1 − x) =

m
∑

i=1

σ2
1(Q

−q/2AiQ
−1/2).

Let

f(x) = xq(1− x), x ∈ [0, 1].

It is not difficult to know that f(x) is monotonically increasing on [0, q
q+1 ],

monotonically decreasing on [ q
q+1 , 1], and

max
x∈[0,1]

f(x) = f(
q

q + 1
) =

qq

(q + 1)q+1
.
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Thus, if

(2.3)

m
∑

i=1

σ2
1(Q

−q/2AiQ
−1/2) <

qq

(q + 1)q+1
,

then scalar equations (2.1) and (2.2) have two positive solutions α1, α2(α1 <
q

q+1 < α2), and β1, β2(β1 < q
q+1 < β2), respectively. It is not difficult to verify

that

(2.4) 0 < α1 ≤ β1 <
q

q + 1
< β2 ≤ α2 < 1.

Note that if (2.3) holds, then α2 = µ where µ is as defined in Theorem 2.2.
Denote the following matrix sets:

ϕ1 = {X > 0 | β1Q ≤ X ≤ β2Q},
ϕ2 = {X > 0 | β2Q ≤ X ≤ α2Q},
ϕ3 = {X > 0 | α2Q < X < Q}.

We have the following theorem:

Theorem 2.3. Suppose that
∑m

i=1 σ
2
1(Q

−q/2AiQ
−1/2) < qq

(q+1)q+1 . Then

Eq.(1.1)
(i) has no positive definite solution in ϕ1, ϕ3;
(ii) has positive definite solutions in ϕ2; Moreover, if

∑m
i=1 ‖Ai‖2‖Q−1‖q+1 <

qq

(q+1)q+1 , then the positive definite solution in ϕ2 is unique, which is the maxi-

mal positive definite solution.

Proof. (i) Let X be any positive definite solution of Eq.(1.1). Applying Lemma
2.2, we have

1

λn(Q−q/2XqQ−q/2)
= ‖Qq/2X−qQq/2‖ ≤ ‖Q1/2X−1Q1/2‖q

=
1

λ
q
n(Q−1/2XQ−1/2)

.

Combining this with Lemma 2.6, we have

λn(Q
−1/2XQ−1/2) = λn(I −

m
∑

i=1

Q−1/2A∗
iX

−qAiQ
−1/2)

= 1− λ1(

m
∑

i=1

Q−1/2A∗
iX

−qAiQ
−1/2)

≥ 1−
m
∑

i=1

λ1(Q
−1/2A∗

iX
−qAiQ

−1/2)

= 1−
m
∑

i=1

λ1(Q
−1/2A∗

iQ
−q/2Qq/2X−qQq/2Q−q/2AiQ

−1/2)



ON THE NONLINEAR MATRIX EQUATION 745

≥ 1− λ1(Q
q/2X−qQq/2)

m
∑

i=1

λ1(Q
−1/2A∗

iQ
−qAiQ

−1/2)

= 1−
∑m

i=1 σ
2
1(Q

−q/2AiQ
−1/2)

λn(Q−q/2XqQ−q/2)

≥ 1−
∑m

i=1 σ
2
1(Q

−q/2AiQ
−1/2)

λ
q
n(Q−1/2XQ−1/2)

.

Thus

m
∑

i=1

σ2
1(Q

−q/2AiQ
−1/2) ≥ [1− λn(Q

−1/2XQ−1/2)]λq
n(Q

−1/2XQ−1/2),

namely, λn(Q
−1/2XQ−1/2) ≤ β1 or λn(Q

−1/2XQ−1/2) ≥ β2. Thus Eq.(1.1)
has no positive definite solution in ϕ1.

Similarly,

λ1(Q
−q/2XqQ−q/2) = ‖Q−q/2XqQ−q/2‖ ≤ ‖Q−1/2XQ−1/2‖q

= λ
q
1(Q

−1/2XQ−1/2),

and from Lemma 2.6,

λ1(Q
−1/2XQ−1/2) = λ1(I −

m
∑

i=1

Q−1/2A∗
iX

−qAiQ
−1/2)

= 1− λn(
m
∑

i=1

Q−1/2A∗
iX

−qAiQ
−1/2)

≤ 1−
m
∑

i=1

λn(Q
−1/2A∗

iQ
−q/2Qq/2X−qQq/2Q−q/2AiQ

−1/2)

≤ 1− λn(Q
q/2X−qQq/2)

m
∑

i=1

λn(Q
−1/2A∗

iQ
−qAiQ

−1/2)

= 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

λ1(Q−q/2XqQ−q/2)

≤ 1−
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

λ
q
1(Q

−1/2XQ−1/2)
.

Thus,

m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2) ≤ [1− λ1(Q

−1/2XQ−1/2)]λq
1(Q

−1/2XQ−1/2).

Consequently, α1 ≤ λ1(Q
−1/2XQ−1/2) ≤ α2, which implies that Eq.(1.1) has

no positive definite solution in ϕ3.
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(ii) Consider the following mapping G :

G(X) = Q−
m
∑

i=1

A∗
iX

−qAi.

G is continuous on ϕ2. If X ∈ ϕ2, then

λn(Q
−1/2G(X)Q−1/2) = λn(I −

m
∑

i=1

Q−1/2A∗
iX

−qAiQ
−1/2)

≥ λn[I −
1

β
q
2

m
∑

i=1

Q−1/2A∗
iQ

−qAiQ
−1/2]

≥ λn[I −
1

β
q
2

m
∑

i=1

σ2
1(Q

−q/2AiQ
−1/2)I]

= 1− 1

β
q
2

m
∑

i=1

σ2
1(Q

−q/2AiQ
−1/2) = β2,

λ1(Q
−1/2G(X)Q−1/2) = λ1(I −

m
∑

i=1

Q−1/2A∗
iX

−qAiQ
−1/2)

≤ λ1(I −
1

α
q
2

m
∑

i=1

Q−1/2A∗
iQ

−qAiQ
−1/2)

≤ λ1[I −
1

α
q
2

m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2)I]

= 1− 1

α
q
2

m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2) = α2.

Therefore, β2I ≤ Q−1/2G(X)Q−1/2 ≤ α2I and consequently, β2Q ≤ G(X) ≤
α2Q. By Schauder fixed point theorem, we know that G(X) has a fixed point
in ϕ2. That is, Eq.(1.1) has a positive definite solution X in ϕ2.

Now suppose
∑m

i=1 ‖Ai‖2‖Q−1‖q+1 < qq

(q+1)q+1 . Let

ρ =
(q + 1)q+1

qq
‖Q−1‖q+1

m
∑

i=1

‖Ai‖2.

Then ρ < 1. Denote

Ω = {X > 0 :
q

q + 1
Q ≤ X ≤ Q].

Obviously, G(X) = Q −∑m
i=1 A

∗
iX

−qAi ≤ Q for any X ∈ Ω. It follows from
Lemma 2.1 that

G(X) = Q−
m
∑

i=1

A∗
iX

−qAi
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≥ Q1/2[I − (1 + q)q

qq

m
∑

i=1

Q−1/2A∗
iQ

−qAiQ
−1/2]Q1/2

≥ Q1/2[1− (1 + q)q

qq

m
∑

i=1

‖Ai‖2‖Q−1‖q+1]Q1/2 >
q

q + 1
Q,

which gives G(Ω) ⊆ Ω.
Notice that for any X,Y ∈ Ω,

X,Y ≥ q

q + 1
λn(Q)I =

q

(q + 1)‖Q−1‖I.

Consequently, we have by Lemma 2.3 that

‖G(X)−G(Y )‖ = ‖
m
∑

i=1

A∗
i (X

−q − Y −q)Ai‖

≤
m
∑

i=1

‖Ai‖2‖X−q − Y −q‖

≤ [
(q + 1)q+1

qq
‖Q−1‖q+1

m
∑

i=1

‖Ai‖2] · ‖X − Y ‖

= ρ‖X − Y ‖,
which means that G(X) is a contraction on Ω. By Banach’s fixed-point theo-
rem, G(X) has a unique fixed point on Ω, denoted by XL. That is, Eq.(1.1) has
a unique positive definite solution XL in Ω. Combining the fact that ϕ2 ⊂ Ω,
we obtain that XL ∈ ϕ2.

Next, we prove that XL is the maximal positive definite solution of Eq.(1.1).
Let X be an arbitrary positive definite solution of Eq.(1.1). Then X ≤ α2Q

according to Theorem 2.2. Since G(X) is monotonically increasing, then

X = G(X) ≤ G(α2Q), X = Gk(X) ≤ Gk(α2Q) → XL, k → ∞.

Thus X ≤ XL which means that XL is the maximal positive definite solution
of Eq.(1.1). �

Remark 2.1. From the proof of Theorem 2.3(ii), we know that if

m
∑

i=1

‖Ai‖2‖Q−1‖q+1 <
qq

(q + 1)q+1
,

then the maximal positive definite solution XL is the unique positive definite
solution of Eq.(1.1) satisfying X > q

q+1Q.

Corollary 2.1. If
∑m

i=1 ‖Ai‖2‖Q−1‖q+1 < qq

(q+1)q+1 , then the maximal positive

definite solution XL satisfies

‖X−1
L ‖ < (1 +

1

q
)‖Q−1‖.
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Moreover, for any other positive definite solution X of Eq.(1.1), we have

‖X−1‖ > (1 +
1

q
)‖Q‖−1.

Proof. Since
∑m

i=1 ‖Ai‖2‖Q−1‖q+1 < qq

(q+1)q+1 , then the maximal positive defi-

nite solution XL exists and satisfies XL ≥ β2Q > q
q+1Q according to Theorem

2.3. Thus X−1
L < (1 + 1

q )Q
−1 which gives ‖X−1

L ‖ < (1 + 1
q )‖Q−1‖.

Let X 6= XL be any positive definite solution to Eq.(1.1). Then

λn(Q
−1/2XQ−1/2) ≤ β1 <

q

q + 1

from the proof of Theorem 2.3(i) and consequently ‖X−1‖ = λ−1
n (X) > (1 +

1
q )λn(Q

−1) = (1 + 1
q )‖Q‖−1. �

Next we give two iterative methods for the maximal positive definite solution
XL .

As first method we consider the following fixed point iteration:

(2.5)

{

X0 = γQ, γ ∈ [µ, 1],

Xk+1 = Q−
∑m

i=1 A
∗
iX

−q
k Ai,

where µ is as defined in Theorem 2.2.

Theorem 2.4. If Eq.(1.1) has a positive definite solution, then the sequence

{Xk} in iteration (2.5) is monotonically decreasing and converges to the max-

imal positive definite solution XL.

Proof. Let X be a positive definite solution of Eq.(1.1). Then X0 = γQ ≥
µQ ≥ X according to Theorem 2.2. Assuming that Xk−1 ≥ X , we have

Xk = Q−
m
∑

i=1

A∗
iX

−q
k−1Ai ≥ Q−

m
∑

i=1

A∗
iX

−qAi = X.

Hence Xk ≥ X for each k = 0, 1, 2, . . ..
Similarly, we prove that the sequence {Xk} is monotonically decreasing by

induction.

X1 = Q−
m
∑

i=1

A∗
iX

−q
0 Ai

= Q−
m
∑

i=1

A∗
i (γQ)−qAi

= Q1/2[I −
∑m

i=1 Q
−1/2A∗

iQ
−qAiQ

−1/2

γq
]Q1/2

≤ Q1/2(1 −
∑m

i=1 σ
2
n(Q

−q/2AiQ
−1/2)

γq
)Q1/2 ≤ γQ = X0,
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where the last inequality holds since

γq(1 − γ) ≤ µq(1− µ) =

m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2).

In fact, this can be obtained from the decreasing property of f(x) = xq(1− x)
in [ q

q+1 , 1] and the fact that q
q+1 ≤ µ ≤ γ ≤ 1. Suppose Xk ≤ Xk−1. Then

Xk+1 = Q−
m
∑

i=1

A∗
iX

−q
k Ai ≤ Q−

m
∑

i=1

A∗
iX

−q
k−1Ai = Xk,

which implies that the sequence {Xk} is monotonically decreasing. Hence {Xk}
is convergent. Denote limk→∞ Xk = Xl. Then Xl ≥ X for any positive definite
solution X which gives Xl = XL. �

Our next algorithm is an inversion-free iteration:

(2.6)







Y0 = (γQ)−1, γ ∈ [µ, 1],
Xk = Q−∑m

i=1 A
∗
i Y

q
k Ai,

Yk+1 = Yk(2I −XkYk),

where µ is as defined in Theorem 2.2.

Theorem 2.5. If Eq.(1.1) has a positive definite solution, then the sequences

{Xk} and {Yk} from (2.6) satisfy

X0 ≥ X1 ≥ X2 ≥ · · · , lim
k→∞

Xk = XL; Y0 ≤ Y1 ≤ Y2 ≤ · · · , lim
k→∞

Yk = X−1
L ,

where XL is the maximal positive definite solution of Eq.(1.1).

Proof. Let X be a positive definite solution of Eq.(1.1). Then X ≤ µQ accord-
ing to Theorem 2.2. Combining this with Lemma 2.1, we obtain that

Y0 = (γQ)−1 ≤ (µQ)−1 ≤ X−1,

X0 = Q−
m
∑

i=1

A∗
i Y

q
0 Ai ≥ Q −

m
∑

i=1

A∗
iX

−qAi = X.

By Lemma 2.4, we have

Y1 = 2Y0 − Y0X0Y0 ≤ X−1
0 ≤ X−1.

Since

X0 = Q−
m
∑

i=1

A∗
iQ

−qAi

γq

≤ Q1/2[1−
m
∑

i=1

σ2
n(Q

−q/2AiQ
−1/2)

γq
]Q1/2 ≤ γQ = Y −1

0

from the definition of γ, then

Y1 − Y0 = Y0 − Y0X0Y0 = Y0[Y
−1
0 −X0]Y0 ≥ 0.
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It follows that

X1 = Q −
m
∑

i=1

A∗
i Y

q
1 Ai ≥ Q−

m
∑

i=1

A∗
iX

−qAi = X

and

X1 −X0 =

m
∑

i=1

A∗
i Y

q
0 Ai −

m
∑

i=1

A∗
i Y

q
1 Ai =

m
∑

i=1

A∗
i (Y

q
0 − Y

q
1 )Ai < 0.

Hence X ≤ X1 ≤ X0 and Y0 ≤ Y1 ≤ X−1. Assuming that

X ≤ Xk ≤ Xk−1, Yk−1 ≤ Yk ≤ X−1, k = 2, 3, . . . ,

we have

Yk = 2Yk−1 − Yk−1Xk−1Yk−1 ≤ X−1
k−1 ≤ X−1

k ,

Yk+1 = 2Yk − YkXkYk ≤ X−1
k ≤ X−1,

Xk+1 = Q−
m
∑

i=1

A∗
i Y

q
k+1Ai > Q−

m
∑

i=1

A∗
iX

−qAi = X,

and consequently,

Yk+1 − Yk = Yk(Y
−1
k −Xk)Yk ≥ 0, Xk+1 −Xk =

m
∑

i=1

A∗
i (Y

q
k − Y

q
k+1)Ai ≤ 0.

Hence we have by induction that X0 ≥ X1 ≥ X2 ≥ · · · ≥ Xk ≥ X and
Y0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Yk ≤ X−1 hold for each k = 0, 1, 2, . . . and so
the sequences {Xk} and {Yk} are convergent. Denote limk→∞ Xk = Xl and
limk→∞ Yk = Y . Taking limit in the iteration (2.6) leads to Y = X−1

l and

Xl = Q − ∑m
i=1 A

∗
iX

−q
l Ai. Moreover, since Xk ≥ X, k = 1, 2, 3, . . . for any

positive definite solution X , we have Xl = XL. �

Theorem 2.6. If Eq.(1.1) has a positive definite solution and after k iterative

steps of iteration (2.6), we have ‖I −XkYk‖ < ǫ, then

‖Xk +
m
∑

i=1

A∗
iX

−q
k Ai −Q‖ ≤ ǫqαλ

1−q
1 (Q)

m
∑

i=1

‖Ai‖2,

where α = min{λ2/q−1
n (AiQ

−1A∗
i )λ

1−1/q
1 (AiQ

−1A∗
i ) : i = 1, 2, . . . ,m}.

Proof. According to Theorem 2.1, we have X
q
L > AiQ

−1A∗
i > 0 for each i =

1, 2, . . . ,m. Denote mi = λn(AiQ
−1A∗

i ) and Mi = λ1(AiQ
−1A∗

i ). From the
proof of Theorem 2.5, we have

λn(Q
−1)I ≤ Q−1 ≤ 1

γ
Q−1 = Y0 ≤ Yk ≤ X−1

k ≤ X−1
L .

Then we obtain that

‖X−q
k − Y

q
k ‖ ≤ q · λq−1

n (Q−1)‖X−1
k − Yk‖ = q · λ1−q

1 (Q)‖X−1
k − Yk‖
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from Lemma 2.3, and

1

γ
Q−1 ≤ X−1

k ≤ X−1
L ≤ (

Mi

mi
)1/q−1(AiQ

−1A∗
i )

−1/q

≤ M
1/q−1
i m

1−2/q
i I, i = 1, 2, . . .

from Lemma 2.5. Since

Xk +

m
∑

i=1

A∗
iX

−q
k Ai −Q = Xk −Xk+1 +

m
∑

i=1

A∗
i (X

−q
k − Y

q
k+1)Ai

=

m
∑

i=1

A∗
i (Y

q
k+1 − Y

q
k )Ai +

m
∑

i=1

A∗
i (X

−q
k − Y

q
k+1)Ai

=

m
∑

i=1

A∗
i (X

−q
k − Y

q
k )Ai.

Then we have

‖Xk +

m
∑

i=1

A∗
iX

−q
k Ai −Q‖ = ‖

m
∑

i=1

A∗
i (X

−q
k − Y

q
k )Ai‖

≤
m
∑

i=1

‖Ai‖2‖X−q
k − Y

q
k ‖

≤ qλ
1−q
1 (Q)

m
∑

i=1

‖Ai‖2‖X−1
k − Yk‖

≤ qλ
1−q
1 (Q)

m
∑

i=1

‖Ai‖2‖X−1
k ‖‖I −XkYk‖

≤ ǫqλ
1−q
1 (Q)

m
∑

i=1

‖Ai‖2‖X−1
k ‖

≤ ǫqλ
1−q
1 (Q)M

1/q−1
i m

1−2/q
i

m
∑

i=1

‖Ai‖2

≤ ǫqαλ
1−q
1 (Q)

m
∑

i=1

‖Ai‖2,

where α = min{λ1−2/q
n (AiQ

−1A∗
i )λ

1/q−1
1 (AiQ

−1A∗
i ) : i = 1, 2, . . . ,m}. �

3. Perturbation estimates for XL

Consider the perturbed matrix equation

(3.1) X̃ +

m
∑

i=1

Ãi
∗
X̃−qÃi = Q̃,
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where Ãi and Q̃ are the slightly perturbed matrices of the matrices Ai and Q,
respectively. In this section, we show that if ‖Ãi − A‖ and ‖Q̃ −Q‖ are suffi-

ciently small, then the maximal solution X̃L to the perturbed matrix equation
(3.1) exists. We derive a perturbation estimate for the maximal positive defi-
nite solution XL and give an explicit expression of the Rice condition number
of XL.

Denote ∆Q = Q̃−Q, ∆X = X̃L −XL, ∆Ai = Ãi −Ai, i = 1, 2, . . . ,m.

Theorem 3.1. Let

(3.2) (i) θ :=
qq

(q + 1)q+1
−

m
∑

i=1

‖Ai‖2‖Q−1‖q+1 > 0,

(3.3) (ii) ‖∆Q‖ ≤ 1

‖Q−1‖ · (1 − q+1
√
1− θ),

(3.4) (iii)

m
∑

i=1

(‖Ãi‖2 − ‖Ai‖2) <
(q + 1)q+1 − qq

(q + 1)q+1‖Q−1‖q+1
θ.

Then nonlinear matrix equations

X +

m
∑

i=1

A∗
iX

−qAi = Q and X̃ +

m
∑

i=1

Ãi
∗
X̃−qÃi = Q̃

have maximal positive definite solutions XL and X̃L, respectively. Moreover,

(3.5) ‖∆X‖ ≤ 1

ξ
· (‖∆Q‖+ 2

m
∑

i=1

‖X−q
L Ai‖ · ‖∆Ai‖+

m
∑

i=1

‖X−q
L ‖ · ‖∆Ai‖2),

where

ξ = 1− qb−(q+1)
m
∑

i=1

‖Ãi‖2, b =
q

q + 1
min{λn(Q), λn(Q̃)}.

Proof. Since θ > 0, we know from Theorem 2.3 that Eq.(1.1) has the maximal
positive definite solution XL ∈ [β2Q,α2Q]. Notice that θ < 1 and

‖Q̃−1‖ ≤ ‖Q−1‖+ ‖Q−1‖ · ‖∆Q‖ · ‖Q̃−1‖ ≤ ‖Q−1‖+ (1 − q+1
√
1− θ)‖Q̃−1‖,

which gives

‖Q̃−1‖q+1 ≤ ‖Q−1‖q+1

1− θ
.

Consequently, we have
m
∑

i=1

‖Ãi‖2‖Q̃−1‖q+1

<
‖Q−1‖q+1

1− θ

[

m
∑

i=1

‖Ai‖2 +
(q + 1)q+1 − qq

(q + 1)q+1‖Q−1‖q+1
θ

]
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=

∑m
i=1(q + 1)q+1‖Ai‖2‖Q−1‖q+1 + [(q + 1)q+1 − qq]θ

(1− θ)(q + 1)q+1

=
qq

(q + 1)q+1
·
∑m

i=1 ‖Ai‖2 (q+1)q+1

qq ‖Q−1‖q+1 + [ (q+1)q+1

qq − 1]θ

1− θ

=
qq

(q + 1)q+1
.(3.6)

Applying Theorem 2.3, we obtain that the perturbed matrix equation (3.1)

has the maximal positive definite solution X̃L ∈ [β̃2Q, α̃2Q], where β̃2 and
α̃2 are the biggest positive solutions of the polynomial equations xq(1 − x) =
∑m

i=1 σ
2
1(Q̃

−q/2ÃiQ̃
−1/2) and xq(1 − x) =

∑m
i=1 σ

2
n(Q̃

−q/2ÃiQ̃
−1/2), respec-

tively.
In the following, we show the estimate (3.5):

Since XL ≥ β2Q > q
q+1λn(Q)I and X̃L ≥ β̃2Q̃ > q

q+1λn(Q̃)I. Let b =
q

q+1min{λn(Q), λn(Q̃)}. Then XL, X̃L > bI and consequently,

‖X−q
L − X̃

−q
L ‖ ≤ qb−(q+1)‖∆X‖

from Lemma 2.3.
Since XL +

∑m
i=1 A

∗
iX

−q
L Ai = Q and X̃L +

∑m
i=1 Ã

∗
i X̃

−q
L Ãi = Q̃, then

X̃L −XL +

m
∑

i=1

Ã∗
i X̃

−q
L Ãi −

m
∑

i=1

A∗
iX

−q
L Ai = Q̃−Q,

i.e.,

∆X = ∆Q+
m
∑

i=1

Ãi
∗
(X−q

L − X̃
−q
L )Ãi +

m
∑

i=1

A∗
iX

−q
L Ai −

m
∑

i=1

Ã∗
iX

−q
L Ãi

= ∆Q+

m
∑

i=1

Ãi
∗
(X−q

L − X̃
−q
L )Ãi −

m
∑

i=1

∆A∗
iX

−q
L Ai

−
m
∑

i=1

∆A∗
iX

−q
L ∆Ai −

m
∑

i=1

A∗
iX

−q
L ∆Ai.

Hence

‖∆X‖ ≤ ‖∆Q‖+
m
∑

i=1

‖Ãi
∗
(X−q

L − X̃
−q
L )Ãi‖+

m
∑

i=1

‖∆A∗
iX

−q
L Ai‖

+

m
∑

i=1

‖∆A∗
iX

−q
L ∆Ai‖+

m
∑

i=1

‖A∗
iX

−q
L ∆Ai‖

≤ ‖∆Q‖+ ‖X−q
L − X̃

−q
L ‖

m
∑

i=1

‖Ãi‖2 +
m
∑

i=1

‖∆A∗
iX

−q
L ∆Ai‖
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+ 2

m
∑

i=1

‖∆A∗
iX

−q
L Ai‖

≤ ‖∆Q‖+ qb−(q+1)‖∆X‖
m
∑

i=1

‖Ãi‖2 + 2
m
∑

i=1

‖X−q
L Ai‖ · ‖∆Ai‖

+

m
∑

i=1

‖X−q
L ‖ · ‖∆Ai‖2.

Denote ξ = 1− qb−(q+1)
∑m

i=1 ‖Ãi‖2. Notice from the proof of (3.6) that
m
∑

i=1

‖Q−1‖q+1 · ‖Ãi‖2 <

m
∑

i=1

‖Q−1‖q+1

1− θ
· ‖Ãi‖2

<
‖Q−1‖q+1

1− θ

[

m
∑

i=1

‖Ai‖2 +
(q + 1)q+1 − qq

(q + 1)q+1‖Q−1‖q+1
θ

]

<
qq

(q + 1)q+1
.

Then

qb−(q+1)
m
∑

i=1

‖Ãi‖2

=

{

q · (q+1)q+1

qq+1 ‖Q−1‖q+1
∑m

i=1 ‖Ãi‖2 < 1 if b = q
q+1λn(Q),

q · (q+1)q+1

qq+1 ‖Q̃−1‖q+1
∑m

i=1 ‖Ãi‖2 < 1 if b = q
q+1λn(Q̃).

Therefore, ξ > 0 and we have

‖∆X‖ ≤ 1

ξ
· (‖∆Q‖+ 2

m
∑

i=1

‖X−q
L Ai‖ · ‖∆Ai‖+

m
∑

i=1

‖X−q
L ‖ · ‖∆Ai‖2).

�

By the theory of condition number developed by Rice [22], we give in this
following an explicit expression of the condition number of the maximal positive
definite solution XL.

The complex case.

Lemma 3.1 ([14]). Let X be any n × n positive definite matrix, 0 < q ≤ 1.
Then

(i) X−q = sin qπ
π

∫∞

0 (λI +X)−1λ−qdλ,

(ii) X−q = sin qπ
qπ

∫∞

0 (λI +X)−1X(λI +X)−1λ−qdλ.

From Theorem 3.1, we see that if ‖(∆A1, . . . ,∆Am,∆Q)‖F is sufficiently

small, then the maximal positive solution X̃L to the perturbed matrix equation
(3.1) exists. Subtracting (1.1) from (3.1) gives rise to

∆X +

m
∑

i=1

[Ãi
∗
X̃

−q
L Ãi −A∗

iX
−q
L Ai] = ∆Q,
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i.e.,

∆X +

m
∑

i=1

[A∗
i (X̃

−q
L −X

−q
L )Ai + Ãi

∗
(X̃−q

L −X
−q
L )∆Ai

+∆A∗
i (X̃

−q
L −X

−q
L )Ai]

= ∆Q −
m
∑

i=1

[(∆A∗
iX

−q
L Ai +∆A∗

iX
−q
L ∆Ai +A∗

iX
−q
L ∆Ai)].(3.7)

Applying Lemma 3.1, we have

X̃
−q
L −X

−q
L

(3.8)

=
sin qπ

π

∫ ∞

0

[(λI +XL +∆X)−1 − (λI +XL)
−1]λ−qdλ

=
sin qπ

π

∫ ∞

0

−(λI +XL)
−1∆X(λI +XL +∆X)−1λ−qdλ

=
sin qπ

π

∫ ∞

0

−(λI +XL)
−1∆X(λI +XL)

−1λ−qdλ

+
sin qπ

π

∫ ∞

0

(λI +XL)
−1∆X(λI +XL +∆X)−1∆X(λI +XL)

−1λ−qdλ.

Combining (3.8) with (3.7), we obtain that
(3.9)

∆X − sin qπ

π

m
∑

i=1

∫ ∞

0

A∗
i (λI +XL)

−1∆X(λI +XL)
−1Aiλ

−qdλ = E + h(∆X),

where E = ∆Q−
∑m

i=1[(∆A∗
iX

−q
L Ai +∆A∗

iX
−q
L ∆Ai +A∗

iX
−q
L ∆Ai)],

h(∆X)

= − sin qπ

π

m
∑

i=1

[A∗
i

∫ ∞

0

(λI +XL)
−1∆X(λI +XL +∆X)−1∆X(λI +XL)

−1λ−qdλAi

+
sin qπ

π

m
∑

i=1

[Ãi
∗
∫ ∞

0

(λI +XL)
−1∆X(λI +XL +∆X)−1λ−qdλ∆Ai

+∆A∗
i

∫ ∞

0

(λI +XL)
−1∆X(λI +XL +∆X)−1λ−qdλAi].

Lemma 3.2. Let
∑m

i=1 ‖Ai‖2‖Q−1‖q+1 < qq

(q+1)q+1 . Then the linear operator

L : Hn×n → Hn×n defined by

(3.10) LW = W − sin qπ

π

m
∑

i=1

∫ ∞

0

A∗
i (λI +XL)

−1W (λI +XL)
−1Aiλ

−qdλ

is invertible.
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Proof. It suffices to show that for any matrix V ∈ Hn×n, the following equation

(3.11) LW = V

has a unique solution. Define the operator M : Hn×n → Hn×n by

MZ =
sin qπ

π

m
∑

i=1

∫ ∞

0

X
−1/2
L A∗

i (λI +XL)
−1X

1/2
L ZX

1/2
L (λI +XL)

−1AiX
−1/2
L λ−qdλ,

Z ∈ Hn×n.

Let Y = X
−1/2
L WX

−1/2
L . Thus (3.11) is equivalent to

(3.12) Y −MY = X
−1/2
L V X

−1/2
L .

Notice that ‖X−1
L ‖ < q+1

q ‖Q−1‖. According to Lemma 3.1(ii), we have

‖MY ‖

= ‖ sin qπ
π

m
∑

i=1

∫ ∞

0

X
−1/2
L A∗

i (λI+XL)
−1X

1/2
L Y X

1/2
L (λI+XL)

−1AiX
−1/2
L λ−qdλ‖

≤ ‖Y ‖ · ‖
m
∑

i=1

sin qπ
π

∫ ∞

0

X
−1/2
L A∗

i (λI +XL)
−1XL(λI +XL)

−1AiX
−1/2
L λ−qdλ‖

= ‖Y ‖ · ‖
m
∑

i=1

q ·X−1/2
L A∗

i · sin qπ
qπ

∫ ∞

0

(λI+XL)
−1XL(λI+XL)

−1λ−qdλ ·AiX
−1/2
L ‖

= q‖Y ‖ · ‖
m
∑

i=1

X
−1/2
L A∗

iX
−q
L AiX

−1/2
L ‖

≤ q‖Y ‖ ·
m
∑

i=1

‖X−q/2
L AiX

−1/2
L ‖2

≤ q‖Y ‖ ·
m
∑

i=1

‖Ai‖2‖X−1
L ‖q+1

≤ q‖Y ‖ ·
m
∑

i=1

‖Ai‖2(
q + 1

q
)q+1‖Q−1‖q+1 < ‖Y ‖.

Then ‖M‖ < 1 which implies that I−M is invertible. Therefore, for any matrix
V ∈ Hn×n, equation (3.12) has a unique solution Y . Thus equation (3.11) has
a unique solution W for any V ∈ Hn×n which implies that the operator L is
invertible. The proof is then completed. �

Let Bi = X
−q
L Ai, i = 1, 2, . . . ,m. We can rewrite (3.9) as

∆X = X̃L −XL

= L−1(∆Q −
m
∑

i=1

B∗
i ∆Ai −

m
∑

i=1

∆A∗
iBi)

− L−1(

m
∑

i=1

∆A∗
iX

−q
L ∆Ai) + L−1(h(∆X)).
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Then we have

∆X = X̃L −XL

(3.13)

= L−1(∆Q −
m
∑

i=1

B∗
i ∆Ai −

m
∑

i=1

∆A∗
iBi) +O(‖(∆A1, . . . ,∆Am,∆Q)‖2F )

(∆A1, . . . ,∆Am,∆Q) → 0. By Rice’s condition number theory [22], we define
the condition number of the maximal positive definite solution XL of Eq.(1.1)
as follows:

(3.14) C(XL) = lim
δ→0

sup
‖(

∆A1
µ1

,...,
∆Am
µm

,
∆Q
ρ

)‖F ≤δ

∆Ai∈Cn×n,∆Q∈Hn×n

‖∆X‖F
ξδ

,

where ξ, ρ, µ1, . . . , µm are positive parameters. Taking ξ = ρ = µ1 = · · · =
µm = 1 in (3.14) gives the absolute condition number Cabs(XL) and taking
ξ = ‖XL‖F , ρ = ‖Q‖F , µi = ‖Ai‖F , i = 1, 2, . . . ,m gives the relative condition
number Crel(XL).

Substituting (3.13) into (3.14), we get

C(XL) =
1

ξ
max

(
∆A1
µ1

,...,
∆Am
µm

,
∆Q
ρ

)6=0

∆Ai∈Cn×n,∆Q∈Hn×n

‖L−1[∆Q−∑m
i=1(B

∗
i ∆Ai +∆A∗

iBi)]‖F
‖(∆A1

µ1
, . . . , ∆Am

µm
, ∆Q

ρ )‖F

=
1

ξ
max

(E1,...,Em,H)6=0

Ei∈Cn×n,H∈Hn×n

‖L−1[ρH −∑m
i=1 µi(B

∗
i Ei + E∗

i Bi)]‖F
‖(E1, . . . , Em, H)‖F

=
1

ξ
max

(E1,...,Em,H)6=0

Ei∈Cn×n,H∈Hn×n

‖L−1[ρH+
∑m

i=1 µiB
∗
i (−Ei)+

∑m
i=1(−Ei)

∗Bi]‖F
‖(−E1, . . . ,−Em, H)‖F

=
1

ξ
max

(K1,...,Km,H)6=0

Ki∈Cn×n,H∈Hn×n

‖L−1[ρH +
∑m

i=1 µi(B
∗
i Ki +K∗

i Bi)]‖F
‖(K1, . . . ,Km, H)‖F

.

Let L be the matrix of the operator L. Then it is not difficult to see that

L = I ⊗ I − sin qπ

π

m
∑

i=1

∫ ∞

0

[(λI +XL)
−1Ai]

T ⊗ [(λI +XL)
−1Ai]

∗λ−qdλ.

Denote by η = vec(H) = a + jb, wi = vec(Ki) = u(i) + jv(i), where

a, b, u(i), v(i) ∈ Rn2

, and j is the imaginary unit. Let

g1 = ( a
b ) , g

(i)
2 =

(

u(i)

v(i)

)

, i = 1, 2, . . . ,m, g =







g1

g
(1)
2

...
g
(m)
2






,

L−1(I ⊗B∗
i ) = L−1(I ⊗ (X−q

L Ai)
∗) = U

(i)
1 + jΩ

(i)
1 , i = 1, 2, . . . ,m,
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L−1(BT
i ⊗ I)Π = L−1((X−q

L Ai)
T ⊗ I)Π = U

(i)
2 + jΩ

(i)
2 , i = 1, 2, . . . ,m,

where U
(i)
1 , U

(i)
2 , Ω

(i)
1 , Ω

(i)
2 ∈ Rn2×n2

, and Π is the vec-permutation matrix,
such that vec(KT ) = ΠvecK. Denote

L−1 = S + jΣ, S,Σ ∈ Rn2×n2

,

Sc =

[

S −Σ
Σ S

]

, U (i)
c =

[

U
(i)
1 + U

(i)
2 Ω

(i)
2 − Ω

(i)
1

Ω
(i)
1 +Ω

(i)
2 U

(i)
1 − U

(i)
2

]

.

Then we obtain that

C(XL)

=
1

ξ
max

(K1,...,Km,H)6=0

Ki∈Cn×n,H∈Hn×n

‖L−1[ρH+
∑m

i=1 µi(B
∗
i Ki+K∗

i Bi)]‖F

‖(K1,...,Km,H)‖F

=
1

ξ
max

(K1,...,Km,H)6=0

Ki∈Cn×n,H∈Hn×n

‖ρL−1vec(H)+
∑m

i=1 µiL
−1vec(B∗

i Ki+K∗
i Bi)‖

‖vec(K1,...,Km,H)‖

=
1

ξ
max

(K1,...,Km,H)6=0

Ki∈Cn×n,H∈Hn×n

‖ρL−1vec(H)+
∑m

i=1 µi[L
−1(I⊗B∗

i )vec(Ki)+L−1(BT
i ⊗I)vec(K∗

i )]‖

‖vec(K1,...,Km,H)‖

=
1

ξ
max

(K1,...,Km,H)6=0

Ki∈Cn×n,H∈Hn×n

‖ρSc( ab )+
∑m

i=1 µiU
(i)
c

(

u(i)

v(i)

)

‖

‖vec(K1,...,Km,H)‖

=
1

ξ
max

(g1,g
(1)
2 ,...,g

(m)
2 ) 6=0

‖ρScg1+
∑m

i=1 µiU
(i)
c g

(i)
2 ‖

‖g‖

=
1

ξ
max
g 6=0

‖(ρSc,µ1U
(1)
c ,...,µmU(m)

c )g‖
‖g‖ =

1

ξ
‖(ρSc, µ1U

(1)
c , . . . , µmU (m)

c )‖.

Theorem 3.2. Let
∑m

i=1 ‖Ai‖2‖Q−1‖q+1 < qq

(q+1)q+1 . Then the condition

number C(XL) defined by (3.14) has the following explicit expression

(3.15) C(XL) =
1

ξ
‖(ρSc, µ1U

(1)
c , . . . , µmU (m)

c )‖,

where Sc, U
(i)
c , i = 1, 2, . . . ,m are defined as above.

Remark 3.1. From (3.15), we have the relative condition number

(3.16) Crel(XL) =
‖(‖Q‖FSc, ‖A1‖FU (1)

c , . . . , ‖Am‖FU (m)
c )‖

‖XL‖F
.

The real case
Next we consider the real case, i.e., all the coefficient matrices A1, . . . , Am, Q

of Eq.(1.1) are real. In such a case the corresponding maximal solution XL is
also real. Similar to Theorem 3.2, we obtain the following theorem.
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Theorem 3.3. Let A1, . . . , Am, Q be real. Suppose that
m
∑

i=1

‖Ai‖2‖Q−1‖q+1 <
qq

(q + 1)q+1
.

Then the condition number C(XL) defined by (3.14) has the explicit expression

(3.17) C(XL) =
1

ξ
‖(ρSr, µ1U

(1)
r , . . . , µmU (m)

r )‖,

where

Sr = [I ⊗ I − sin qπ

π

m
∑

i=1

∫ ∞

0

[(λI +XL)
−1Ai]

T ⊗ [(λI +XL)
−1Ai]

Tλ−qdλ]−1,

U (i)
r = Sr[I ⊗ (AT

i X
−q
L ) + ((AT

i X
−q
L )⊗ I)Π], i = 1, 2, . . . ,m.

Remark 3.2. In the real case the relative condition number is given by

(3.18) Crel(XL) =
‖(‖Q‖FSr, ‖A1‖FU (1)

r , . . . , ‖Am‖FU (m)
r )‖

‖XL‖F
.

4. Numerical experiments

In this section, some simple examples are given to illustrate the results of
the previous sections. All the tests are carried out using MATLAB 7.1 with
machine precision around 10−16. The practical stopping criterion used is the
residual ‖X +

∑m
i=1 A

∗
iX

−qAi −Q‖ < 10−10.

Example 4.1. Consider Eq.(1.1) with the case m = 2, q = 0.3, and the
matrices A1, A2 and Q as follows:

A1 =













−0.45 0.45 0.85 −1.2 0.75
0.55 1.05 0.4 0.75 0.9
−0.9 0.95 −0.7 0.85 −0.9
0.7 −0.85 0.4 0.7 0.75
0.25 0.65 0.75 −0.6 0.65













,

A2 =













−0.54 0.57 1.02 −1.35 0.93
0.69 1.26 0.51 0.63 1.11
−1.08 1.14 0.87 1.02 −1.11
0.87 −1.02 0.51 0.84 0.93
0.33 0.81 0.93 −0.72 0.78













,

Q =













68.6 28.8 21.2 25.2 21.6
28.8 52.4 9.6 10.8 20.4
21.2 9.6 38.0 12.0 13.2
25.2 10.8 12.0 48.9 9.6
21.6 20.4 13.2 9.6 40.4













.

By computation, (‖A1‖2 + ‖A2‖2)‖Q−1‖q+1 = 0.3019 < qq

(q+1)q+1 = 0.4955,
q

q+1 = 0.2308, β2 = 0.8164 and α2 = 0.9992. According to Theorem 2.5, take
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γ = 1, using iteration (2.6) and iterating 8 steps, then we get the maximal
positive definite solution to Eq.(1.1):

XL ≈ X8 =













66.8612 29.6685 20.3249 24.7669 20.0718
29.6685 49.7674 9.6956 10.7331 20.6371
20.3249 9.6956 36.3003 13.3999 11.2874
24.7669 10.7331 13.3999 45.7122 10.4319
20.0718 20.6371 11.2874 10.4319 37.8838













with the residual ‖X8 +
∑m

i=1 A
∗X

−q
8 A − Q‖ = 8.4947e − 012. Moreover,

from λn(X8 − β2Q) = 0.2338 and λn(α2Q − X8) = 0.0012, we know that
XL ∈ [β2Q,α2Q].

Example 4.2. Let

A =

√
3

45













1 0 0 0 1
−1 1 0 0 1
−1 −1 1 0 1
−1 −1 −1 1 1
−1 −1 −1 −1 1













, B =
A+A∗

2
,

q = 0.5, X = diag(0.725, 2, 3, 2, 1), Q = X +A∗X−qA+B∗X−qB.

Consider the perturbed matrix equation

X̃ + Ã∗
j X̃

−qÃj + B̃∗
j X̃

−qB̃j = Q̃j ,

where ǫj = 0.12j, Ãj = A+ ǫj(I +E), B̃j = B+ ǫj(I +2E) X̃j = X + ǫj(I −
E), Q̃j = X̃j + Ã∗

j X̃
−q
j Ãj + B̃∗

j X̃
−q
j B̃j , with

E =













1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1













.

Now we compute the perturbation bounds for Eq.(1.1).

By computation, (‖A‖2 + ‖B‖2)‖Q−1‖q+1 = 0.0286 < qq

(q+1)q+1 = 0.3849

and λn(X − q
q+1Q) = 0.4804 > 0 which implies that X = XL from Remark

2.1. Obviously, X̃j are positive definite solutions of the perturbed matrix equa-

tions X̃ + Ã∗
j X̃

−qÃj + B̃∗
j X̃

−qB̃j = Q̃j . Moreover, it is not difficult to verify

that the corresponding equations X̃ + Ã∗
j X̃

−qÃj + B̃∗
j X̃

−qB̃j = Q̃j and X̃j

satisfy the assumption (‖Ãj‖2 + ‖B̃j‖2)‖Q̃−1
j ‖q+1 < qq

(q+1)q+1 and the condi-

tions λn(X̃j − q
q+1 Q̃j) > 0 for each j = 1, 2, 3, 4, 5. Thus by Remark 2.1,

X̃j (j = 1, 2, . . . , 5) are the maximal positive definite solutions of the corre-

sponding perturbed matrix equations, respectively. We denote X̃j = X̃
j
L and

let ∆X(j) = X̃
j
L − XL. All the conditions of Theorem 3.1 are satisfied for

j = 1, 2, 3, 4, 5. The results are given in the following table.



ON THE NONLINEAR MATRIX EQUATION 761

j = 1 j = 2 j = 3 j = 4 j = 5

true error ‖∆X(j)‖
‖XL‖ 0.0133 1.3333e−004 1.3333e−006 1.3333e−008 1.3333e−010

our result (3.5) 0.0277 2.4599e−004 2.4581e−006 2.4581e−008 2.4581e−010

Example 4.3. Consider Eq.(1.1) with q = 0.5 and

A1 =

(

0 a1
0 0

)

, A2 =

(

0 a2
0 0

)

, Q =

(

1.1 0
0 1.2

)

,

where a1 = 0.25+10−k and a2 = 0.35+10−k. Denote θ =
∑m

i=1 ‖Ai‖2‖Q−1‖q+1

− qq

(q+1)q+1 . Results for Crel(XL) by (3.18) with different vales of k are listed

below where Crel(XL) is the relative condition number of the maximal positive
definite solution.

k 1 2 3 4 5 6
θ −0.1032 −0.2140 −0.2235 −0.2244 −0.2245 −0.2245

Crel(XL) 1.2588 1.1452 1.1362 1.1353 1.1352 1.1352

From the numerical results in the second line, we see that the condition of
Theorem 3.3 is always satisfied for each k = 1, 2, . . . , 6. The numerical results
listed in the third line show that the maximal positive definite solution XL is
well-conditioned in such cases.
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