References
- L. Ambrosio, G. Savare, and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Related Fields 145 (2009), no. 3-4, 517-564. https://doi.org/10.1007/s00440-008-0177-3
- E. Barkai, Fractional Fokker-Planck equation, solution, and application, Phys. Rev. E 63 (2001), 046118. https://doi.org/10.1103/PhysRevE.63.046118
- E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math. 125 (2000), no. 1-2, 297-307. https://doi.org/10.1016/S0377-0427(00)00475-1
- K. Burrage, P. M. Burrage, and T. Tian, Numerical methods for strong solutions of stochastic differential equations: an overview, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004), no. 2041, 373-402. https://doi.org/10.1098/rspa.2003.1247
- K. Burrage and P. M. Burrage, Numerical methods for stochastic differential equations with applications, advanced computational modeling center, Unversity of Queensland, Australia, 2002.
- M. Careltti, Numerical solution of stochastic differential problems in the biosciences, J. Comput. Appl. Math. 185 (2006), no. 2, 422-440. https://doi.org/10.1016/j.cam.2005.03.020
- J. B. Chen and J. Li, A note on the principle of preservation of probability and probability density evolution equation, Probab. Eng. Mech. Vol. 24 (2009), 51-59. https://doi.org/10.1016/j.probengmech.2008.01.004
- S.-N. Chow and H.-M. Zhou, An analysis of phase noise and Fokker-Planck equations, J. Differential Equations 234 (2007), no. 2, 391-411. https://doi.org/10.1016/j.jde.2006.11.015
- O. Ditlevsen, Invalidity of the spectral Fokker-Planck equation for Cauchy noise driven Langevin equation, Probab. Eng. Mech. 19 (2004), no. 4, 385-392. https://doi.org/10.1016/j.probengmech.2004.04.002
- T. D. Frank and A. Daffertshofer, Nonlinear Fokker-Planck equations whose stationary solutions make entropy-like functionals stationary, Phys. A 272 (1999), no. 3-4, 497-508. https://doi.org/10.1016/S0378-4371(99)00264-2
- T. D. Frank, A note on the Markov property of stochastic processes described by nonlinear Fokker-Planck equations, Phys. A 320 (2003), no. 1-4, 204-210. https://doi.org/10.1016/S0378-4371(02)01544-3
- D. Kim and D. Stanescu, Low-storage Runge-Kutta methods for stochastic differential equations, Appl. Numer. Math. 58 (2008), no. 10, 1479-1502. https://doi.org/10.1016/j.apnum.2007.08.006
- P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlage, Berlin, 1992.
- Y. Komori, T. Mistsui, and H. Sugiura, Rooted tree analysis of the order continuous of row-type scheme for stochastic differential equation, BIT, 37 (1997), no. 1, 43-66. https://doi.org/10.1007/BF02510172
- H. P. Langtangen, A general numerical solution method for Fokker-Planck equations with applications to structural relibaility, Probab. Eng. Mech. 6 (1991), no. 1, 33-48. https://doi.org/10.1016/S0266-8920(05)80005-0
- X. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under local Lipschitz condition, J. Comput. Appl. Math. 151 (2003), no. 1, 215-227. https://doi.org/10.1016/S0377-0427(02)00750-1
- X. Mao, C. Yuan, and G. Yin, Numerical method for stationary distribution of stochastic differential equations with Markovian switching, J. Comput. Appl. Math. 174 (2005), no. 1, 1-27. https://doi.org/10.1016/j.cam.2004.03.016
- H. C. Ottinger, Stochastic Processes in Polymeric Fluids, Springer Verlag, Berlin, 1999.
- M. Di Paola and A. Sofi, Approximate solution of the Fokker-Planck-Kolmogorov equation, Probab. Eng. Mech. 17 (2002), 369-384. https://doi.org/10.1016/S0266-8920(02)00034-6
- S. Primak, V. Kontorovich, and V. Lyandres, Stochastic Methods and Their Applications to Communications, John Wiley & Sons Ltd, 2004.
- H. Risken, The Fokker-Planck Equation, Second Edition. Springer, 1996.
- Jr. M. S. Torres and J. M. A. Figueiredo, Probability amplitude structure of Fokker-Plank equation, Phys. A 329 (2003), no. 1-2, 68-80. https://doi.org/10.1016/S0378-4371(03)00615-0
- A. Tocino and R. Ardanuy, Runge-Kutta methods for numerical solution of stochastic differential equations, J. Comput. Appl. Math. 138 (2002), no. 2, 219-241. https://doi.org/10.1016/S0377-0427(01)00380-6