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NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL

EQUATION CORRESPONDING TO CONTINUOUS

DISTRIBUTIONS

Mohammad Amini, Ali Reza Soheili, and Mahdi Allahdadi

Abstract. We obtain special type of differential equations which their
solution are random variable with known continuous density function.
Stochastic differential equations (SDE) of continuous distributions are de-

termined by the Fokker-Planck theorem. We approximate solution of dif-
ferential equation with numerical methods such as: the Euler-Maruyama
and ten stages explicit Runge-Kutta method, and analysis error predic-
tion statistically. Numerical results, show the performance of the Rung-

Kutta method with respect to the Euler-Maruyama. The exponential
two parameters, exponential, normal, uniform, beta, gamma and Parreto
distributions are considered in this paper.

1. Introduction and preliminaries

Many physical systems are modeled by ordering differential equations. In
many models for describing physical phenomena, stochastic terms were omitted
because there are not powerful numerical methods and high performance com-
puters. Some applications of stochastic differential equations are investment
funds, population dynamic, polymer dynamic, Sntyk protein and genetic sci-
ence. Also stochastic concepts apply in chemical movement models and physic.
History of appearance of stochastic differential equation has been a time to solve
different physical and mathematical problems including random variables and
quantities. Despite that in many cases, ignoring stochastic terms in some phe-
nomena lead to simpler untrue analysis. As a result, stochastic quantities were
considered for obtaining actual models. Many authors have been investigated
the numerical solution of stochastic differential equations (see for example, Mao
and Sabanis ([16]), Buckwar ([3]), Tocino and Ardanuy ([23]), Mao et al. ([17]),
Kim and Stanescu ([12]) and Carletti ([6])). Moreover Burrage et al. ([4]) has
been studied a review of recent progress in the design of numerical methods for
computing sample paths of solutions to stochastic differential equations.
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In this paper, stochastic differential equations were considered where their
solution is a random variable with known distribution, this stochastic differen-
tial equations (SDE) of continuous distributions are determined by the Fokker-
Planck theorem, special distributions like uniform, exponential (with one and
two parameters), normal, beta, gamma and Parreto were studied. Before pre-
senting the main results, we need to review some definitions and theorems. In
Section 2, the Euler-Maruyama as a method for approximating stochastic dif-
ferential equations and its error estimation and also confidence interval for the
error will be presented. Section 3 shows how to determine differential equa-
tions of the continuous distributions and finally in Section 4, we approximate
the solution with a Runge-Kutta method.

Definition 1.1. Let {X(t), t ≥ 0} be a real valued Markov process, the tran-
sition distribution function is defined

F (y, s, x, t) = P [X(t) ≤ x|X(s) = y],

where x, y ∈ R and 0 < s < t. Density function (if there exist) is obtained

f(y, s, x, t) =
∂F (y, s, x, t)

∂x
.

Definition 1.2. Let {X(t), t ≥ 0} be a stochastic process with real valued,
where for F ∈ L1(0, T ), G ∈ L2(0, T ) and all times 0 ≤ s ≤ r ≤ T, satisfy in

X(r) = X(s) +

∫ r

s

Fdt+

∫ r

s

GdW,

then X(t) for 0 ≤ t ≤ T has the Ito stochastic differential equation dX =
Fdt+GdW , where Li(0, T ), i = 1, 2 are the space of all real stochastic processes

and measurable F such that E(
∫ T

0
|F |idt) < ∞.

Theorem 1.1 (Burrage, [5]). The Ito stochastic differential equation dX =
a(t,X)dt+ b(t,X)dW has an unique solution, if a(t,X) and b(t,X) satisfy in
the Lipschitz conditions and Linear-growth bounded condition.

Let {X(t), t ≥ 0} be a diffusion stochastic process and ∂F (y,s,x,t)
∂y , ∂2F (y,s,x,t)

∂y2

exist and continuous in each components. Then the transition density function
f(y, s, x, t) satisfies in the following partial differential equation,

(1.1)
∂f(x, t)

∂t
= −∂(a(x, t)f(x, t))

∂x
+

1

2

∂2(b2(x, t)f(x, t))

∂x2
,

this equation is known as the Kolmogorov’s forward equation (Kloeden and
Platen ([13])).
The Fokker-Planck equation in the form (1.1) was obtained to study Brownian
motion and is sometimes called a diffusion equation. The coefficient a(x, t) de-
scribes the average value of the particle displacement and is also known as the
drift. Likewise, b(x, t) can be interpreted as a variance of a particle’s displace-
ment from the average value and is called the diffusion coefficient (For more
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details see Primak et al. ([20]) and Risken ([21])). Moreover, many authors
studied the Fokker-Planck equations and its applications, such as; Langtangen
([15]), Paola and Sofi ([19]), Ditlevsen ([9]), Chen and Li ([7]), Frank ([11]),
Ambrosio et al. ([1]), Barkai ([2]), Chow and Zhou ([8]) Torres and Figueiredo
([22]) and Frank and Daffertshofer ([10]). Ottinger ([18]) proved that if density
function satisfies in the Fokker-Planck equation, then it is the density function
of random process X(t) which satisfy in the following stochastic differential
equation

dX = a(t,X)dt+ b(t,X)dW.

Obviously, if in (1.1), drift and diffusion coefficients are independent of t (these
conditions valid for stationary distributions), then the corresponding stochastic
differential equation and the Fokker-Plank equation will be;

(1.2)
d(a(x)f(x))

dx
=

1

2

d2(b2(x).f(x))

dx2
, dX = a(X)dt+ b(X)dW.

Langtangen ([15]) shows that the analytical solution of Fokker-Planck equation
in this case is;

f(x) =
C0

b2(x)
exp[2

∫ x

x0

a(t)

b2(t)
dt],

where C0 is a normalizing constant. Also, he derived “when b2(x) = 2πS0,
where S0 is a constant the SDE in (1.2) can be interpreted as an equation for
the velocity X of a particle subjected to a viscous force a(x) and a white noise
excitation with constant spectral density equal to S0. Such models are rele-
vant for studying one-dimensional Brownian motion in gases and liquids. By
allowing b2(x) to vary with x the Fokker-Planck equation also has important ap-
plications in the description of energy envelops of stochastic oscillators”. Here,
SDE of some continuous distributions are obtained and then, their analytical
or numerical solutions are calculated.

2. Numerical methods of SDE and error estimation

Consider Y = {Y (t), t0 ≤ t ≤ T} satisfy in stochastic differential equation
dY = a(Y )dt + b(Y )dW. Let X = {X(t), t0 ≤ t ≤ T} be a stochastic process
that obtain from numerical method and

(2.1) Xn+1 = Xn + (τn+1 − τn)a(Xn) + b(Xn).(Wτn+1 −Wτn),

which known as the Euler-Maruyama (Kloeden et al. [13]) method with time
approximation t0 < τ1 < τ2 < · · · < τN = T on the time interval [0, T ], where
this interval discrete construction uniformly, i.e., τn = t0 + nδ and δ = T−t0

N .
When the drift coefficient vanishes then (2.1) becomes the Euler method for
ordinary differential equations. The main problem is generation of stochas-
tic increments ∆Wn = Wτn+1 − Wτn for n = 0, 1, 2, . . . , N − 1. Here, these
increments are generated with randn command in Matlab software, because
∆Wn√

∆n
∼ Normal(0, 1). If the exact solution is known, the absolute error may be

calculated that means ε = E|Y (T )−XT |, where XT and Y (T ) are the values
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of X and Y at time T . Assume N different sample paths of Wiener process and
corresponding the Euler approximations of them on the same sample paths of
Wiener process are simulated. Let Y (T, k) and XT,k be the values of Wiener
process and the Euler approximation at time T and on k-th simulation path,
respectively. Now, the error is

(2.2) ε̂ =
1

N

N∑
k=1

|Y (T, k)−XT,k|.

For example, consider the Ito stochastic differential equation

(2.3)

{
dY (t) = µY (t)dt+ σY (t)dW,

Y (0) = Y0,

where µ, σ > 0. The exact solution is;

Y (t) = Y0 exp[(µ− 1

2
σ2)t+ σ.W (t)].

For simulation on a sample path of the Euler approximation, with using initial
value X0 = Y0 and (2.1), Xn are obtained recursively. Now, the exact and
numerical solutions on same path of Wiener process at time T are comparable,
so

Y (τn) = Y0 exp[(µ− 1

2
σ2)τn + σ.

n∑
i=1

∆Wi−1]

for N = 25 path of Y (t) satisfy in (2.3) with Y0 = 1, µ = 2 and σ = 1.

Table 1: Absolute errors ε̂1, ε̂2

δ 2−4 2−5 2−6 2−7

ε̂1 0.8139 0.6315 0.4374 0.3266
ε̂2 1.2553 1.1088 0.7201 0.4603

Table 1, shows the error according to (2.2) with step length δ = 2−4, 2−5, 2−6,
2−7 and initial seed values 94 (ε̂1) and 194 (ε̂2) for generating random number
in time interval [0, 1]. However these approximations are random variables and
have different values in a batch, but for large N and applying the Central
Limit Theorem, we consider the error ε̂ as an normal random variable, so σ2

ε

be estimated as follows and may calculate a confidence interval for absolute
error ε. First simulated values are sorted in M batches of N paths. Assume
XT,k,j be the Euler approximation on k-th path in j-th batch at time T and
Y (T, k, j) is its corresponding process. The mean error is

ε̂j =
k − 1

N

N∑
k=1

|Y (T, k, j)−XT,k,j |, j = 1, 2, . . . ,M.

Now, we use the student T -distribution for calculating the confidence interval
for sums of normal variables because variance is unknown. The mean and
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Figure 1. Confidence interval for absolute error correspond-
ing to each batch for initial seed values 94(left) and 194(right).

variance of error for each batch are

ε̂ =
1

M

M∑
j=1

ε̂j , σ̂ε
2 =

1

M − 1

M∑
j=1

(ε̂j − ε̂)2.

Therefore, a confidence interval (1−α) percent for ε is (ε̂−∆ε̂, ε̂+∆ε̂) where
∆ε̂ = tα

2
(M − 1) σ̂ε√

M
. Assume M = 20, α = 0.1, then t0.05(19) = 2.09. For

N = 100 the Wiener process path with Y0 = 1, µ = 2, σ = 1 and the Euler
approximation with step length δ = 2−4 correspond to the same sample paths
of the Wiener process on [0, 1], the confidence interval 90 percent is calculated
for ε. These procedure are repeated for M = 40, 80, 160 and the results are
shown in Figure 1. We observe that increasing batches, decrease confidence
interval width.

3. Stochastic differential equation for continuous distributions

In this section, with using Fokker-Planck equation, for stochastic process
{Y (t)}, stochastic differential equation and corresponding equation for density
function are determined and then equations with nonlinear coefficients are ap-
proximated with some methods like Euler-Maruyama and equations with linear
coefficients may be solved numerically and analytically. Here, we only describe
detail of the method for exponential and normal distributions and method for
other distributions are similar. Assume Y is a continuous random variable with
corresponding stochastic differential equation dY = a(Y )dt + b(Y )dW . It is
clear that, different choices of a(x) give several common probability densities.
Next, using conditions for diffusion process and also experimented methods,
consider drift coefficient a(Y ) in form of −α(Y − EY ), where α is a positive
constant real number.
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Figure 2. Numerical solution of SDE corresponds to the ex-
ponential distribution with parameters α = λ = 2.

3.1. Exponential distribution

Let Y ∼ exp(λ) with density function f(y) = λ exp[−λy], y ≥ 0, and drift
coefficient a(y) = (−α(y − 1

λ )). From the Fokker-Plank equation be deduced:

d

dy
[−α(y − 1

λ
).λ exp(−λy)] =

1

2

d2

dy2
[b2(y).λ exp(−λy)].

Assume g(y) = b2(y) and from solution of the above differential equation, we
have

g(y) = (c1 + c2)e
λy +

2α

λ
y.

The diffusion coefficient b(y) should satisfy to the Lipschitz condition and linear

growth bounded, then c1 = c2 = 0 and b(y) =
√

2α
λ y. Therefore, the following

stochastic differential equation will be obtained

dy = −α(y − 1

λ
)dt+

√
2α

λ
ydW (t).

Figure 2 shows numerical approximation of the above SDE by the Euler-
Maruyama method with λ = α = 2.
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3.2. Normal distribution

Let Y ∼ N(µ, σ2) with drift coefficient a(y) = −α(y−µ). From the Fokker-
Planck equation, we have

d

dy
[−α(y − µ)

1√
2πσ

exp[− (y − µ)2

2σ2
]] =

1

2

d2

dy2
[b2(y)

1√
2πσ

exp[− (y − µ)2

2σ2
]],

with solving the ordinary differential equation, we obtain b(y) =
√
2ασ. Hence

stochastic differential equation is:
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Exact solution
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Figure 3. Numerical and exact solutions of (1.3) with the
Euler-Maruyama method(top) and 10 stages explicit Runge-
Kutta method(down) corresponding to the normal distribution
with parameters Y0 = 1, α = 2, µ = 0, σ = 1.
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Figure 4. Absolute error with respected to logarithm of long
walks 2−6, 2−7, . . . , 2−16.

(1.3) dY = −α(y − µ)dt+
√
2ασdW (t).

The coefficient of the above SDE is linear, so the exact solution will be (Kloeden
and Platen, [13])

Y (t) = exp(−tα)(Y0 − µ(1− exp(−tα)) +
√
2ασ

∫ t

0

exp(sα)dW (s).

The numerical approximation with the Euler-Maruyama method and the so-
lution with parameters α = 2, µ = 0, σ = 1 and initial seed value 13 will be
presented in Figure 3. The error for N = 29 on 35 path is 0.445. For 25 paths
of process Y (t) that satisfy in (1.3) with α = 2, Y0 = 1, µ = 0, σ = 1.

Table 2: Absolute error ε

δ 2−5 2−6 2−7 2−8

ε 2.9775 1.9241 1.1935 0.8132

Table 2 shows the error of (2.2) with step length δ = 2−5, 2−6, 2−7, 2−8 and
initial seed value 94 for generating random number on time interval [0, 1]. The
graph of absolute error vice versa logarithm of the length 2−5, 2−6, . . . , 2−16 be
shown in Figure 4.

3.3. Other distributions

With similar method and by the Fokker-Plank theorem, we obtain the
Fokker-Plank and the stochastic differential equations for the following dis-
tributions and be presented in Table 4.
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• Double exponential distribution with parameters η and θ.
• Pareto distribution with parameters k and θ
• Gamma distribution with parameters k and θ
• Beta distribution with parameters a and b
• Uniform distribution with parameters a and b

4. Runge-Kutta method for solving SDE

One of approximation method for SDE dY (t) = f(Y (t))dt + g(Y (t))dW (t)
is Runge-Kutta method where be defined as follows;

Yh = Y0 +
∑s

j=1 cjYj ,

Yi = hiaif(Y0 +
∑s

j=1 αijYj) + hif
(1)(Y0)

∑s
j=1 γijYj

+wibig(Y0 +
∑s

j=1 βijYj) + wig
(1)(Y0)

∑s
j=1 δijYj ,

diffusion coefficient of SDE has normal distribution independent of y and so
the solution of above differential equation equivalence to the solution of corre-
sponding Itô-differential equation. According to the order conditions (Komori,
et al., [14]), coefficients ai, bi, ci and matrices α, β, γ, δ for 10 stages explicit
Runge-Kutta method are obtained (Table 3), therefore

Yh = Y0 +
1

2
h.f(ȳ) +

1

2
h.f(Y0) +

1

4
h.g(Y0)g

(1)(Y0) +
1

2
∆W.g(Y0)

+

√
h

24
[8{g(ȳ + 1

2

√
hg(ȳ))− g(ȳ − 1

2

√
hg(ȳ))}

− {g(ȳ +
√
hg(ȳ))− g(ȳ − 1

2

√
hg(ȳ))}]

+
1

4
g(ȳ+){∆W + ((∆W )2 − h)h

1
2 }+ 1

4
g(ȳ−){∆W + ((∆W )2 − h)h

1
2 },

Table 3: Parameters of explicit Runge-Kutta method 10 stage
Parameters Conditions
ai, αij , γij , δij a3 = a5 = 1, α51 = α32 = 1, δ32 = 0.5 and 0 otherwise

bi b3 = 0, b5 = − 1
12 and 1 otherwise

ci c1 = c3 = c5 = 1
2 , c6 = 1

24 , c7 = 1
3 , c8 = −c7, c9 = c10 = 1

4 and 0 otherwise

wi w1 = ∆W,w2 = w3 = w4 = w5 = w6 = w7 = w8 =
√
h,

w9 = ∆W + ((∆W )2 − h)h− 1
2 , w10 = ∆W − ((∆W )2 − h)h− 1

2

βij β41 = β43 = β51 = β53 = β54 = β61 = β63 = β71 = β73 = β81 = β83 = β92 = β93 = β10,3 = 1,
β64 = β10,2 = −1, β74 = 1

2 , β84 = −1
2 and 0 otherwise

where ∆W is a random variable of normal distribution with mean zero and
variance h and

ȳ = Y0 + h(f(Y0) +
1

2
g(Y0)g

(1)(Y0)) + g(Y0)∆W,

ȳ± = Y0 + h(f(Y0) +
1

2
g(Y0)g

(1)(Y0))± g(Y0)
√
h.

The graph of exact and numerical solutions with 10 stages explicit Runge-
Kutta method for SDE corresponding the normal distribution with parameters
Y0 = 1, α = 2, µ = 0, σ = 1 and initial seed value 13 for generating random
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number over [0, 1] and h = 2−9 and 25 paths is 0.3846, is shown in Figure
3(below).

Table 4: SDE, Fokker-Plank and corresponding distribution
Distribution Fokker-Plank equation SDE

exp(λ) d
dy [−α(y − 1

λ ).λe
−λy] = dy = −α(y − 1

λ )dt+
√

2α
λ dW (t)

d2

2dy2 [b
2(y).λe−λy]

N(µ, σ2) d
dy [−α(y − µ) 1√

2πσ
e−

(y−µ)2

2σ2 ] = dy = −α(y − µ)dt+
√
2ασdW (t)

d2

2dy2 [b
2(y). 1√

2πσ
e−

(y−µ)2

2σ2 ]

DubleExp(η, θ) d
dy [−α(y − η − θ). 1θ e

− y−η
θ ] = dy = −α(y − η − θ)dt+

√
2αθ(y − η)dW (t)

d2

2dy2 [b
2(y). 1θ e

− y−η
θ ]

Gamma(k, θ) d
dy [−α(y − kθ). 1

θkΓ(k)
yk−1e−

y
θ ] = dy = −α(y − kθ)dt+

√
2αθydW (t)

d2

2dy2 [b
(y). 1

θkΓ(k)
yk−1e−

y
θ ]

Pareto(k, θ) d
dy [−α(y − θ

k−1 ).
k
θ (1 +

y
θ )

−k−1] = dy = −α(y − θ
k−1 )dt+

√
2αy(y+θ)

k−1 dW (t)
d2

dy2 [b
2(y).kθ (1 +

y
θ )

−k−1]

Betta(a, b) d
dy [−α(y − a

a+b ).
Γ(a+b)
Γ(a)Γ(b)y

a−1(1− y)b−1] dy = −α(y − a
a+b )dt+

√
2αy(1−y)

a+b .dW (t)
d2

dy2 [b
2(y). Γ(a+b)

Γ(a)Γ(b)y
a−1(1− y)b−1]

U(a, b) d
dy [−α(y − a+b

2 ). 1
b−a ] = dy = −α(y − a+b

2 )dt+
√
α(y − a)(b− y)dW (t)

d2

2dy2 [b
(y). 1

b−a ]

5. Conclusions

Among continuous distributions, SDE corresponding normal distribution is
an equation with linear coefficients and may calculate the exact solution. In the
pervious section, the absolute error for different stage and estimation of confi-
dence interval have shown with different batch length. The easiest numerical
approximation of differential equation is the Euler method. As in Figure 3 is
shown, numerical and simulation exact solutions may have not same behavior
with Euler method, but 10 stages explicit Runge-Kutta method have higher
weak convergency order with respect to the Euler, (Kloeden and Platen, [13]
and Komori, et al., [14]) and numerical solution have higher accuracy. There-
fore, if we choose the normal distribution as a test problem, the numerical
solution for other distributions with this Runge-Kutta method have good ac-
curacy.
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