• 제목/요약/키워드: explicit formulation

검색결과 128건 처리시간 0.021초

평면 뼈대구조물의 큰 변형에 대한 비선형 유한요소의 정식화 (A Finite Element Nonlinear Formulation for Large Deformations of Plane Frames)

  • 윤영묵;박문호
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.69-83
    • /
    • 1994
  • 평면 뼈대구조물의 매우 큰 변형에 대하여 정확한 비선형 유한요소의 정식화 과정을 나타내었다. 유한요소의 구성은 변화되는 재료의 기준 물성치에 근거를 두고 형성하였으며 매우 큰 변형을 받는 재료의 성질을 명확하게 특정지어 진응력-변형율 관계식을 직접 적용할 수 있도록 하였다. 큰회전과 작은 변형율을 받는 문제들을 형성하기 위하여 Co-rotation 접근 방법을 사용하였다. 큰 변형을 일으키는 요소의 문제를 해결하기 위하여 직선보 형태의 유한요소를 사용하였으며 개개의 유한요소의 정식화는 축방향력의 영향을 고려하여 미소 처짐보이론을 바탕으로 형성하였다. 본 연구에서 형성된 큰 변형에 대한 비선형 유한요소의 타당성을 확인하기 위해 몇몇 수치해들을 해석하고 검토하였다.

  • PDF

고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면) (Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects))

  • 황찬규
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.286-290
    • /
    • 2008
  • 본 논문은 고체 추진 로켓의 연소 중에 발생하는 고체추진체의 동적 파괴 현상 및 유체-구조 상호작용을 시뮬레이션 하기 위한 프로그램 개발에 대한 것이다. 개발된 프로그램은 구조해석을 위한 CVFE (cohesive Volumetric Finite Element) 방법과 외재적 ALE (Arbitrary Lagrangian Eulerian) 방법을 응용한 유한요소법 코드와 유동해석을 위한 외재적 비정렬 유한 체적 오일러 코드(Explicit Unstructured Finite Volume Euler code)로 구성된다. 개발된 프로그램의 또 다른 중요한 특징은 균열의 전파와 고체추진체의 변형에 따라 생기는 추진제 형상의 대변형이 발생할 때, 새로 생긴 유체 영역에서의 격자의 확장과 복구되는 능력이다.

구조물의 결함 규명을 위한 위상최적설계 기법의 적용가능성 연구 (A Feasibility Study on the Application of the Topology Optimization Method for Structural Damage Identification)

  • 이중석;김재은;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.115-123
    • /
    • 2006
  • A feasibility of using the topology optimization method for structural damage identification is investigated for the first time. The frequency response functions (FRFs) are assumed to be constructed by the finite element models of damaged and undamaged structures. In addition to commonly used resonances, antiresonances are employed as the damage identifying modal parameters. For the topology optimization formulation, the modal parameters of the undamaged structure are made to approach those of the damaged structure by means of the constraint equations, while the objective function is an explicit penalty function requiring clear black-and-white images. The developed formulation is especially suitable for damage identification problems dealing with many modal parameters. Although relatively simple numerical problems were considered in this investigation, the possibility of using the topology optimization method for structural damage identification is suggested through this research.

임의 조건으로 성형되는 박판의 평면변형률 해석 (Plane Strain Analysis of Thin Sheet Forming with Arbitrary Conditions)

  • 금영탁;이승열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.201-212
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation of arbitrarily-shaped tool profiles and arbitrarily draw-in conditions is introduced. An implicit, incremental, updated Lagrangian formulation is employed, introducing a rigid-viscoplastic constitutive equation. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshe without depending on the explicit spatial derivatives of tool surfaces. The FEM formulation is tested in the sections automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains in the stretched section is obtained, but also the numerical stability of current formulation is verified in the two-side draw-in section.

  • PDF

임의의 성형조건을 갖는 박판의 평면변형율 해석 (Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions)

  • 금영탁;이승열
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

NVIDIA 의 GPGPU 를 이용한 수 많은 구형 접촉 입자가 포함된 다물체 동역학 해석 (Co-simulation of MultiBody Dynamics and Plenteous Sphere of Contacted Particles Using NVIDIA GPGPU)

  • 박지수;윤준식;최진환;임성수
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.465-474
    • /
    • 2012
  • 본 연구에서는 수 많은 입자가 포함된 다물체 동역학 모델을 시뮬레이션 하여 그 결과를 도출하였다. 수 많은 입자들은 GPU 를 적용한 이산 요소법을 이용해 풀었다. 입자들의 Contact Force 를 계산하기 위해 Fast Algorithm 이 적용되었고 계산 속도 향상을 위해 NVIDIA 사의 CUDA 프로그래밍을 하였다. 입자들간의 계산은 Explicit 적분기가 사용되었으며 다물체 동역학은 순환 공식(Recursive Formulation)을 사용 하고 Implicit 적분기를 사용하였다. 입자들과 다물체 사이의 Contact Force 를 동시에 시뮬레이션 하기 위해서 입자동역학과 다물체 동역학의 통합해석을 할 수 있는 알고리즘을 개발하였다. 수치 실험의 예로서 화물트럭의 입자 영향을 알아 보기 위한 화물트럭 모델과 대부분의 동력 전달 장치에 사용되는 기어 모델을 시뮬레이션 하였다.

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

Assumed strain quadrilateral C0 laminated plate element based on third-order shear deformation theory

  • Shi, G.;Lam, K.Y.;Tay, T.E.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.623-637
    • /
    • 1999
  • This paper presents a four-noded quadrilateral $C^0$ strain plate element for the analysis of thick laminated composite plates. The element formulation is based on: 1) the third-order shear deformation theory; 2) assumed strain element formulation; and 3) interrelated edge displacements and rotations along element boundaries. Unlike the existing displacement-type composite plate elements based on the third-order theory, which rely on the $C^1$-continuity formulation, the present plate element is of $C^0$-continuity, and its element stiffness matrix is evaluated explicitly. Because of the third-order expansion of the in-plane displacements through the thickness, the resulting theory and hence elements do not need shear correction factors. The explicit element stiffness matrix makes the present element more computationally efficient than the composite plate elements using numerical integration for the analysis of thick layered composite plates.

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.