• 제목/요약/키워드: explicit dynamic transient analysis

검색결과 9건 처리시간 0.02초

외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석 (Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program)

  • 김기운;정현성;범현규
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

명시적인 동적 시간이력해석을 한 사절점 가변형도 평판요소 (A Four-Node Assumed Strain Plate Element for Explicit Dynamic Transient Analysis)

  • 이상진
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.349-359
    • /
    • 2001
  • 본 논분은 평판구조물의 동적 시간이력해석을 수행하기 위하여 개발된 사절점 판요소에 대하여 기술하였다. 이 요소는 두꺼운 판에서 발생하는 횡전단 변형효과를 고려하기 위하여 Reissner-Mindlin(RM)가정을 도달하였다. 알려진 바와 같이 RM가정을 바탕으로 개발된 판요소가 얇은 판에 적용되면 전단강성 과대현상(,Shear Locking Phenomenon)을 일으키는데 이를 개선하기 위하여 본 연구에서는 가변형도법을 이용한 대체변형도를 자연좌표계에 준하여 명시적으로 유도하였다. 개발된 저차 판요소는 중앙 차분법을 이용한 명시적인 동적 해석 알고리즘에 적용되었으며 이때 판의 대각질량행렬은 특별집중질량법을 사용하여 형성하였다. 개발된 판의 성능은 수치예제를 통하여 평가하고 검증하였다.

  • PDF

형상과 단부조건에 따른 아치의 비선형 동적거동 (A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions)

  • 여동훈;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구 (A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure)

  • 최찬문
    • 수산해양기술연구
    • /
    • 제32권2호
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

쉘 구조물의 과도동적거동해석에 적용된 응력률들의 비교 (Comparison of Objective Stress Rates for Explicit Transient Shell Dynamics Analysis)

  • 하재선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.497-502
    • /
    • 2004
  • This paper presents applications of the objective stress rates to stress update algorithms for transient shell dynamic analysis within the context of explicit time integration. The hypo elasto-plastic materials are assumed in establishing constitutive equations. The derivation of the objective stress rates are investigated by use of the Lie derivative. Comparison results are given between the Kirchhoff and Cauchy stress formulation. The Jacobian determination algorithm proposed in this paper is presented in association with the Belytschko-Lin-Tsay shell theory. Several numerical examples are demonstrated including contact and non-contact examples, by which proposed algorithms are compared with respect to the accuracy and effectiveness.

  • PDF

평균속도 개념을 적용한 상태공간에서의 과도응답해석 (A Transient Response Analysis in the State-space Applying the Average Velocity Concept)

  • 김병옥;김영철;김영춘;이안성
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

선형하중에 의한 직교이방성 매체의 반구계에서 동적 응답 특성 (Dynamic Responses on Semi-Infinite Space Due to Transient Line Source in Orthotropic Media)

    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.974-980
    • /
    • 1998
  • 본 논문은 직교이방성 탄성계에서 내부 선형하중에 의한 탄성파의 거동을 고찰하였다. 첫째로, 내부 발진원에 대한 탄성과 거동식을 무한계와 반구계에서의 직교이방성 매체에서 유도하였고, 둘째로 Cargniard-DeHoop을 이용하여 순간선형하중에 대한 무한계와 반구계에서의 탄성과 거동식을 유도하였다. 반구계에서 탄성파에 대한 거동식은 무한계에서 유도한 결과와 반구의 표면에서 분산되는 반사파의 합으로 표현되고, 경계영역에서 경계조건을 만족하였다. 여러 가지 이방성 매체에 대한 수치해석 결과를 제시하였고, 이방성 매체의 특성인 bulk wave의 Lacunae 및 표면파의 영향을 고찰할 수 있었다. 본 논문의 결과는 지진연구, 복합소재 특성 연구, 지능형소재 특성연구 등에 응용될 것이다.

  • PDF

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

지중발파에 의한 건물의 진동 거동에 관한 연구 (A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting)

  • 조병윤;문형구
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF