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Abstract 

This paper presents applications of the objective stress rates to stress update algorithms for transient 
shell dynamic analysis within the context of explicit time integration. The hypo elasto-plastic materials are 
assumed in establishing constitutive equations. The derivation of the objective stress rates are investigated by 
use of the Lie derivative. Comparison results are given between the Kirchhoff and Cauchy stress formulation. 
The Jacobian determination algorithm proposed in this paper is presented in association with the Belytschko-
Lin-Tsay shell theory. Several numerical examples are demonstrated including contact and non-contact 
examples, by which proposed algorithms are compared with respect to the accuracy and effectiveness. 

1. Introduction 

The key issue in computational plasticity is how to 
establish and to integrate a constitutive equation as a 
material undergoes elastic-plastic deformation, when a 
deformation history is assumed to be given. At this point, 
it is very importantly noted that the stress should be on 
the yield surface when the material exhibits plastic 
deformation. For infinitesimal deformation including 
small rotations, a constitutive equation for hypo elastic-
plastic materials can be in rate form established by the 
material time derivative of the Cauchy stress tensor and 
the rate of deformation tensor. However, for the case of 
finite deformation including large deformations and/or 
large rotations, stress rates retaining material objectivity 
or the material frame indifference are employed instead 
of the material time derivative of the Cauchy stress 
tensor in the constitutive equations of hypo-elastic 
materials [1, 2]. As discussed next, the material 

objectivity of the material time derivative of the Cauchy 
stress tensor disappears unless the time increment size is 
very small [3].  

As an objective stress rate, the Zarembar-Jaumann-
Noll stress rate or shortly, the Jaumann stress rate, had 
been considered most popular before it was unveiled that 
the nature of the Jaumann stress rate discloses a spurious 
oscillation for a hypo-elastic material in simple shear. 
Dienes [4] suggested the replacement to the Jaumann 
stress rate should be the Green-McInnis-Naghdi stress 
rate. Johnson and Bammann [5] showed that the use of 
the Jaumann stress rate in the generalization of the 
infinitesimal theory leads to an oscillatory response in 
the evolution of the yield surface in simple shear, and a 
monotonic increasing shear stress might be achieved by 
utilization of the Green-Naghdi stress rate. Hence, most 
of main large scale simulation hydrocodes, nowadays, 
took the replacement of the Green-Naghdi stress rate 
instead of the Jaumann stress rate due to its anomaly [4]. 
However, the anomaly does not manifest itself at shear 
strains less than 0.4 [4]. It is noted that the vast majority 
of solid dynamics problems fall into this category. The 
most widely used stress rates include the Zarembar-
Jaumann-Noll stress rate, the Green-McInnis-Naghdi 
stress rate, and the Truesdell stress rate [6]. What is more, 
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lots of stress rates are found in the literature such as the 
Oldroyd stress rate [7], the Durban-Baruch stress rate, 
the Cotter-Rivlin stress rate [8], the Szabó-Balla stress 
rate, the twirl tensor of the Eulerian triad stress rate, the 
twirl tensor of the Lagrangian triad stress rate, and the 
logarithmic stress rate. 

The present paper presents comparison of transient 
shell dynamics results obtained by the application of a 
unified stress update algorithm in association with 
objective corotational stress rates. The stress update 
algorithm of the radial return method [9], presented by 
the author in the conference of Solid and Structural 
Mechanics Division of KSME 2003, is here, divided into 
two braches including the Cauchy stress formulation and 
the Kirchhoff stress formulation. The Cauchy stress 
formulation means that the objective stress rates are 
expressed in terms of the Cauchy stress tensor, while the 
Kirchhoff stress formulation means that the objective 
stress rates are expressed in terms of the Kirchhoff stress 
tensor. By use of the Lie derivative based on the push-
forward and pull-back concept, a series of objective 
stress rates has been derived in this paper. The present, 
then, research covers the Cauchy and Kirchhoff stress 
formulation of the objective stress rates such as the 
Jaumann rate, Truesdell rate, Oldroyd rate, Cotter-Rivlin 
rate, and Green-Naghdi rate to integrate hypo elasto-
plastic constitutive equations. An explicit finite element 
implementation based on the Belytschko-Lin-Tsay shell 
element generation theory [13] for the transient shell 
dynamics problems will be conducted.  

As a transient shell dynamics example, a spherical 
cap clamped all round and subjected to a uniform 
pressure is demonstrated. As a contact-impact problem, 
a pipe whip problem is presented, namely, one pipe is 
contacting another one whose circumferences at both 
ends are fixed. 

2. Preliminaries 

Let us consider a solid continuum body occupying 
an open set B  in the three dimensional Euclidean 
space, 3 , namely ⊂ 3B . A configuration represents a 
state of the body. Therefore, the position vector of a 
continuum particle constituting the undeformed body is 
denoted by ( )1 2 3, ,X X X= ∈ ⊂X 3B . The 

corresponding covariant basis, then, is denoted as a set 

{ }1,2,3A A =E | , and their covariant base vectors are unit 

Cartesian vectors.  As the body moves, we obtain a 
series of configurations. If our attention is restricted to an 
interval of time [ ]0,T=T , a smooth motion of the body 
is described as a one-to-one mapping:  

 ( ), : ,X t tϕ × → ⊂ ∀ ∈   3B T S T ,  (1) 

where S denotes a closure of the body in the spatial or 
current configuration. Hence, we have a new 
configuration representing a deformed state of the body, 
which are described by another contravariant 
set { }| 1, 2,3ax a= = ∈ ⊂ 3

X S . In the same manner, 

the position vector of a continuum particle constituting 
the deformed body is denoted 
by ( )1 2 3, ,x x x= ∈ ⊂x 3S . The covariant basis, then, is 

denoted as { }1,2,3a a =e | , and their covariant base 

vectors are also unit Cartesian vectors. The deformation 
gradient tensor is the material gradient of x , as defined 
in terms of unit Cartesian base vectors as: 

. 

xF e E e E
X

i
J i J

i J iJ

x F
X

∂ ∂
= = ⊗ = ⊗
∂ ∂

.  (2) 

Also the deformation gradient tensor can be expressed in 
terms of generalized base vectors as: 

xF g G
X

i
i

∂
= = ⊗
∂

,  (3) 

Where ig are the covariant base vectors in the deformed 
local configuration, while iG  are the contravariant base 
vectors in the undeformed configuration. By the way, the 
inversed deformation gradient tensor is the spatial 
gradient of X , as given below: 

1 XF G g
x

i
i

− ∂
= = ⊗
∂

.  (4) 

The contravariant and covariant base vectors have the 
following relations each other 

1, ,
,

g F G  g F G  
G F g  G F g

i i
i i

T i T i
i i

−

−

= ⋅ = ⋅

= ⋅ = ⋅
. (5) 

The Kirchhoff stress tensor τ is given in terms of a 
push-forward operation *ϕ  

( )*
T ij

i jϕ τ= = ⋅ ⋅ = ⊗τ S F S F g g , (6) 
where S  is the second Piolar-Kirchhoff stress tensor. On 
the contrary, the second Piolar-Kirchhoff stress is 
expressed as: 

( )* 1S τ F τ F G GT ij
i jSϕ − −= = ⋅ ⋅ = ⊗ . (7) 

Hence, equation (7) shows a pull-back operation for a 
second order tensor with contravariant components.  

When we consider only the mechanical process in 
which thermal effects are ignored such as in the 
isothermal or isentropic and adiabatic processes, the rate 
of internal energy coincides with the rate of the 
Helmholtz free energy. For the mechanical process only, 
the stored energy function or strain energy function w are 
used. Hence we have 

0 : :W Jρ = =σ d τ d , (8) 

where W is the rate of the stored energy function in the 
undeformed configuration, J  is the Jacobian between 
the reference and spatial configurations, and d is the 
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velocity strain tensor. When pull-back operations are 
applied to the above equation, we find that 

0 :Wρ = S E , (9) 

where E is the rate of the Green-Lagrangian strain tensor. 
Green defined an elastic material as one for which a 
strain energy function exists. Truesdell [12] called the 
material hyperelastic. From the definition of the second 
Piolar-Kirchhoff stress tensor, the rate-type equation can 
be derived as: 

2 2

0 0

1: :
2

W Wρ ρ∂ ∂
= =

∂ ∂ ∂ ∂
S E 4 C

E E C C
, (10) 

Notice that from equation (10), we have the so-called 
second elasticity tensor as: 

2

0
ijkl

i j k l

W Cρ ∂
= = ⊗ ⊗ ⊗

∂ ∂
G G G G

E E
C  (11) 

It should be noted that the push-forward operation of the 
left-side term in equation (10) is equivalent to the Lie-
derivative of the Kirchhoff stress tensor ( )vL τ as follows: 

( ) ( ){ } ( )*
v

D L
Dt

ϕ ϕ ϕ⎡ ⎤= =⎢ ⎥⎣ ⎦
* *S τ τ . (12) 

Since the push-forward operation of E  yields in the 
spatial description, 

( ) ( )1T
vLϕ − −= ⋅ ⋅ = =* E F E F d e , (13) 

equation (10) results in 
( ) ( ) ( )* : : :v vL Lϕ= = =τ d d eC C �  �C , (14) 

where C �is called the fourth elasticity tensor or spatial 
elasticity tensor and it can be expressed as 

ijkl
i j k lc= ⊗ ⊗ ⊗g g g gC . (15) 

Due to Doyle and Ericksen [10], the spatial elasticity 
tensor C �is given by 

( )
2 4

W
ρ
∂∂

= =
∂ ∂ ∂

gτ
g g g

C . (16) 

Notice that ( )*ϕ = C  C . It, hence, should be noticed that 
in the convected coordinates the contravariant 
components between the Lagrangian coordinates and 
Eulerian coordinates are equivalent each other. If we use 
the same rectangular Cartesian coordinates for both the 
undeformed and the deformed configurations of the body 
such as in the isoparametric finite element formulation, 
we have 

I I=G E ,  .

j
i

i j I ji

x F
X
∂

= =
∂  g e e . (17) 

In the end, since i i=E e , we observe that in the 
rectangular Cartesian coordinates 

. . . .
ijkl IJKL i i i i

I J K Lc C F F F F=     . (18) 

( )vL τ leads to the convected rate or the Oldroyd 
rate [7] of the Kirchhoff stress as: 

( ) O T
vL ∇= = − ⋅ − ⋅τ τ τ l τ τ l , (19) 

where l  is the spatial velocity gradient tensor. ( )vL τ is 
an objective stress rate for which the contravariant 

components are consider. For the covariant components 
of the spatial second-order tensor, the Lie derivative 
yields the Cotter-Rivlin stress rate as shown below: 

( )i j CR T
v ijL τ ∇= ⊗ = = + ⋅ + ⋅τ g g τ τ l τ τ l . (20) 

The Oldroyd stress rate of the Kirchhoff stress can be 
expressed as 

( ) ( )( ):T T
vL J J ∇= − ⋅ − ⋅ +τ σ l σ σ l d I σ = σ , (21) 

where T∇σ is the Truesdell stress rate of the Cauchy 
stress. For the contra-covariant or covariant-
contravariant components, we have 

( )
( )

1
.

2
.

i j m
v j i

j i m T T
v i j

L

L

τ

τ

∇

∇

⊗ = = − ⋅ + ⋅

⊗ = = + ⋅ − ⋅

 

  
 

g g τ τ l τ τ l,

g g τ τ l τ τ l
, (22) 

From equation (22), the Jaumann stress rate of the 
Kirchhoff stress can be derived as 

( )1 21
2

J m m∇ ∇ ∇= + = + ⋅ − ⋅τ τ τ τ τ w w τ . (23) 

where w  is the spin tensor. It is noted that the Jaumann 
stress rate of the Cauchy stress may be written as: 

J∇ = + ⋅ − ⋅σ σ σ w w σ . (24) 
The polar decomposition states that any 

deformation gradient tensor can be multiplicatively 
decomposed into the product of the rotation tensor R  
and the right stretch tensor U or the left stretch tensor as 
shown below:  

= ⋅ = ⋅F R U V R . (25) 
Introducing the intermediate base vectors G and g , we 
observe that  

, , ,i i
i i i i i i= ⋅ = ⊗ = ⋅ = ⊗g U G U g G g R g  R g g , (26) 

, , ,i i
i i i i i i= ⋅ = ⊗ = ⋅ = ⊗G R G  R G G g V G  V g G , (27) 

The push-back operation of the spatial identity tensor 
under the rotation part R  of F  becomes  

( )* i i j T
i ijg= ⊗ = ⊗ = ⋅ ⋅R g g g g g R g R . (28) 

From equation (26), we have 
1 ,i T i

i i
− = ⊗ = ⊗R g g  R g g . (29) 

Hence, we have 
( )* i j k i

i j k i= ⊗ ⋅ ⊗ ⋅ ⊗ = ⊗ = =R g g g g g g g g g I g .(30) 
It should be noted that equation (30) is not equivalent to 
the same expression as in [11; 204]. Furthermore, the 
push-back operation of g  under the rotation part U  
of F  shows that 

( )*U g g g U g Ui T
i= ⊗ = ⋅ ⋅ . (31) 

From equation (26), we have 
T i

i= ⊗U G g . (32) 
Hence, we find that 

( )* =U g C , (33) 
where C is the right Cauchy Green strain tensor. 
Provided that g  is referred to as an intermediate 
configuration being usually called the unrotated 
configuration, the unrotated stress tensor τ  of the 
Kirchhoff stress can be written as 
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( )* T ij
i jτ= = ⋅ ⋅ = ⊗τ R τ R τ R g g , (34) 

where ijτ represent the contravariant components of the 
unrotated Kirchhoff stress tensor. Consequently, the Lie 
derivative of the Kirchhoff stress tensor leads to 

( ) ( ){ }*
*

R G
v

DL
Dt

∇⎡ ⎤= = + ⋅ − ⋅ =⎢ ⎥⎣ ⎦
Ω Ωτ R R τ τ τ τ τ , (35) 

where Ω  represents the rate of rotation tenor. The 
above equation is called the Green-McInnis-Naghdi 
stress rate of the Kirchhoff stress. It is noted that the 
unrotated Kirchhoff stress tensor may be represented in 
terms of the stored energy function as : 

2 Wρ ∂
=

∂
τ

g
, (36) 

where ρ represents the density in the unrotated 
configuration. Hence a new constitutive equation can be 
derived as  

( )
2

4 :R v

WL ρ ∂
=

∂ ∂
τ d

g g
. (37) 

3. Constitutive Modeling for Hypo elasto-

plastic Materials 

The Cauchy’s equation of motion can not be solved 
unless the relation between the first Piolar-Kirchhoff 
stress tensor and the acceleration or displacement is 
defined, because the first Piolar-Kirchhoff stress tensor 
depends on the deformation. Hence, that is why we need 
to introduce constitutive equations. Truesdell classified 
three elastic materials such as Cauchy elastic, 
hyperelastic, and hypoelastic materials. The Cauchy 
elastic material is one for which the Cauchy stress tensor 
can be written by a one-to-one mapping [12; 119]. It is 
noted that the current stress, the Cauchy stress, depends 
on only the current configuration, and not on the past 
history of the motion. Secondly, the hyperelastic, or 
Green-elastic, is one for which a strain energy function 
exists. Thirdly, a material is said to be hypoelastic, if any 
objective stress rate is a homogeneous linear function 
depending on the rate of deformation tensor and the 
Cauchy stress tensor as 

( ),σ σ d∇ =M , (38) 

where ∇σ  denotes any objective rate of the Cauchy 
stress. The function M  should be an objective function 
of the Cauchy stress tensor and the rate of deformation 
tensor. For most of hypoelastic materials, the function 
M  may be assumed to be linear between the objective 
Cauchy stress rate and the rate of deformation as seen 
below: 

( ) :∇ =σ σ d , (39) 

where ( )σ  is the fourth-order tensor of elastic moduli 
depending on stress. Simo and Pister [11] proved that the 
use of the constant isotropic elasticity tensor of the 

infinitesimal in the hypoelasticity rate makes the material 
be inelastic due to the loss of the major symmetries of 
the elasticity tensors. Furthermore the hypoelasticity rate 
constitutive equations in which the elastic response of 
the rate of deformation tensor is characterized are also no 
longer appropriate for an elastic material due to the 
major symmetry failure. None the less, they concluded 
the assumption, particularly in the context of finite 
deformation metal plasticity, of the constant isotropic 
rate constitutive equation may be valid, provided large 
volumetric strains do not occur. In other word, the 
Jacobian should be almost one in the elastic region. It 
should be noted that the demonstrations given by Simo 
and Pister is contradictory to the arguments associated 
with the anomaly of the Jaumann stress rate as 
mentioned before. Hence in what follows, the 
hypoelastic rate constitutive equations we are about to 
investigate in phenomenological elastic-plastic materials 
with combined isotropic and kinematic hardening effects 
should be applied on the ground that the elastic strains 
are small compared to plastic strains and the large 
volumetric strains do not occur in the elastic deformation.  

 
Table 1 Objective stress rates for hypoelastic rate 

constitutive equations 
Stress Rates Equations 

Jaumann J∇ = + ⋅ − ⋅σ σ σ w w σ  
Jaumann J∇ = + ⋅ − ⋅τ τ τ w w τ  

Green-Naghdi G∇ = + ⋅ − ⋅Ω Ωσ σ σ σ  
Green-Naghdi G∇ = + ⋅ − ⋅Ω Ωτ τ τ τ  

Oldroyd O T∇ = − ⋅ − ⋅σ σ l σ σ l  
Oldroyd O T∇ = − ⋅ − ⋅τ τ l τ τ l  

Truesdell ( ):

T T∇ = − ⋅ − ⋅

+

σ σ l σ σ l
d I σ

 

Cotter-Rivlin CR T∇ = + ⋅ + ⋅σ σ l σ σ l  
Cotter-Rivlin CR T∇ = + ⋅ + ⋅τ τ l τ τ l  

 
It is generally assumed that the total velocity strain 

tensor d  can be additively decomposed as follows: 
 el pl= +d d d , (40) 

in which eld and pld  are the elastic and plastic parts 
respectively. In elastic-plastic analysis, the rate-
independent constitutive equation of hypo elasto-plastic 
materials is defined as follows:  

 : el∇ =σ d , (41) 
where eld  is of the total rate of deformation tensor. 
Notice that equation (41) is analogous to equation (39) in 
the sense of the form. We note that the total rate of 
deformation tensor is replaced by the elastic part of it. In 
other words, the elastic response of the material is 
hypoelastic. Therefore the elastic part of the total 
velocity strain tensor is linearly related to the material 
time rate of the Cauchy stress tensor. By the way, with 
the notion of hyperelasticity, we may have 

 :τ d el∇ = , (42) 
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where is any objective stress rate of the Kirchhoff stress. 
In the sense of hyperelasticity, it can be observed that 
equation (42) implies that  

 
( ) ( )22

0

ˆ
: :

el

el
el el

WW
ρ

∂∂
= ≈

∂ ∂ ∂ ∂

EE
S E E

E E E E
, (43) 

where elE is the elastic part of the Green-strain tensor. It 
should be noted that elE  is different from the one of the 
intermediate configuration as shown in the literatures. In 
the spatial description, equation (43) may be rewritten: 

( ) : el
vL =τ d , (44) 

where  may be given by 
2λ µ= ⊗ +I I J , (45) 

in which λ and µ  are the Lamé coefficients and the 
identity tensors are given by 

,i i j
i i j= ⊗ = ⊗ ⊗ ⊗I g g  J g g g g . (46) 

Equation (44) becomes 
( ) ( ), :ep

vL =τ σ d d . (47) 
It is noted that equation (47) retains a typical form of the 
rate constitutive equations for hypoelastic materials. It 
should importantly be realized that in the case of the 
elastic deformation, since equation (47) becomes the rate 
constitutive equation of the hypoelasticity of grade zero, 
the portion of elastic strains should be small compared 
with the one of plastic strains in order for equation (47) 
to be valid.  

4. Determination of Jacobian  

In this paper, the Kirchhoff and Cauchy 
formulations are referred to the formulation seen in [9]. 
In the Kirchhoff formulation, determination of the 
Jacobian is required to calculate the Kirchhoff stress 
tensor. The Jacobian indicates the determinant of the 
deformation gradient tensor, in which the deformation 
means a one-to-one mapping. A procedure to determine 
the Jacobian, which is required to calculate the Kirchhoff 
stress tensor, is presented. The following procedure is 
intended to apply for the Belytschko-Lin-Tsay shell 
element implementation [13]. 

The deformation gradient tensor is denoted as 
( )∂ +∂ ∂

= = = +
∂ ∂ ∂

X ux uF I
X X X

, (48) 

where is u  the displacement vector. Introducing a 
corotational transformation matrix Q , we have 

ˆ∂
= + ⋅

∂
uF I Q
X

, (49) 

where û is the displacement vector of a Belytschko-Lin-
Tsay shell element in the corotational coordinates. The 
application of the chain rule to equation (49) results in 

ˆ ˆ ˆ
ˆ ˆ

T∂ ∂ ∂
= + ⋅ ⋅ = + ⋅ ⋅

∂ ∂ ∂
u x uF I Q I Q Q
x X x

, (50) 

where x̂ denotes the corotational coordinates in the 
Belytschko-Lin-Tsay shell element formulation. Since 
the Belytschko-Lin-Tsay shell element is based on the 

Mindlin theory of plates and shells, the displacement 
vector of a point in the shell may be expressed in terms 
of the translational displacement vector components 
( )ˆ ˆ ˆ, ,m m m

x y zu u u  and the rotational displacement vector 

components ( )ˆ ˆ ˆ, ,x y zφ φ φ  of the midsurface by 

( )
( )

( )

ˆˆ ˆ ˆ ˆ,ˆ
ˆˆ ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ,

 

 

m m
x yx

m m
x y x

m
x z

u x y zu
u u x y z
u u x y

φ

φ

⎧ ⎫+⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪⎩ ⎭

. (51) 

In a bilinear quadrilateral element with single-point 
quadrature, we, hence, have the following expression 

1 2

1 2

1 2

ˆˆ ˆ
ˆ ˆˆ ˆ
ˆ

ˆ ˆ 0

m m m
I xI I xI I yI

m m m
I yI I yI I xI

m m
I zI I zI

B u B u N

B u B u N
B u B u

φ

φ

⎡ ⎤
⎢ ⎥∂ ⎢ ⎥=

∂ ⎢ ⎥
⎢ ⎥⎣ ⎦

   
u    
x

  
,  (52) 

where Einstein’s summation convention is applied over 
nodes, I = 1,…,4, and the shape function IN  may be 
written in terms of the isoparametric coordinates ( ),ξ η , 
as: 

( )( )1 1 1
4I I IN ξξ ηη= + + ,  (53) 

And the strain matrices 1 2,I IB B  can be expressed as: 

1 2,
ˆ ˆ

I I
I I

N NB B
x y

∂ ∂
= =

∂ ∂
. (54) 

Finally Jacobian can be determined by taking the 
determinant of the deformation gradient tensor 
J = F . (55) 

5. Numerical Examples 

In this section, numerical examples are presented to 
serve the purpose of illustrating the accuracy and the 
effectiveness of the stress update procedures by the 
several objective stress rates derived so far. All the 
example results presented hereafter were obtained by a 
parallel transient dynamic code, GT-PARADYN [13], 
developed by the author, and in which the stress update 
algorithms proposed are inserted. 

 
5.1 Spherical cap under pressure 

As a non-contact example, a uniform pressure is 
imparted over the spherical cap as shown in the left-hand 
side of Fig. 1. The cap is clamped all round. Due to 
symmetry, only one quadrant of the cap is considered for 
the finite element model as shown in the left-hand side of 
Fig. 1. The material undergoes an elastic-plastic 
deformation with an isotropic hardening. Three 
integration points through the thickness are applied. The 
deflection curves for the center point by the several stress 
rates are compared in the right-hand side of Fig. 1. For 
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this case, any difference between results by the stress 
rates does not come out. The deflections of the center 
point are in good agreement with that by Belytschko [13] 
respectively. 
 

 
Fig. 1 Spherical cap center point displacement 

5.2 Pipes impacting with both ends fixed 
As a contact example, the two pipes are contacting 

toward each other, but circumferences of the lower pipe 
at both ends are clamped. All dimensions and properties 
are the same. Only the upper pipe is flying. For node 541 
on the upper pipe, the deflection curves up to 160 
milliseconds are compared in the right-hand side of Fig. 
2. At about 80 milliseconds, the upper pipe seems to 
rebound. The graph indicates that the Kirchhoff stress 
formulation is more conservative and unstable than the 
Cauchy stress formulation. 

 

 
Fig. 2 Displacement of Node 541 

6. Conclusions 

Constitutive equations are established for hypo 
elasto-plastic materials. Several objective stress rates are 
derived by use of the Lie derivative. These stress rates 
are incorporated into the stress update algorithms 
proposed by the author. The algorithms are divided into 
two categories, including the Cauchy and Kirchhoff 
formulation. The difference among the stress rates are 
investigated for contact or non-contact examples. It is 

noted that the Kirchhoff stress formulation is more 
conservative for the contact problem. But, for non-
contact examples, the same deflection curves are 
obtained. For the future work, the instability problem of 
the Kirchhoff stress formulation for the contact example 
will be solved along with a new contact algorithm.  
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