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ABSTRACT

The analysis of dynamic responses are carried out on several orthotropic systems due to
transient line source. These include infinite and semi-infinite spaces. The media possess
orthotropic or higher symmetry. The load is in the form of a normal stress acting with
parallel to symmetry axis on the plane of symmetry within the materials. The results are
first derived for responses of infinite media due to a harmonic line source. Subsequently the
results for semi-infinite are derived by using superposition of the solution in the infinite
medium together with a scattered solution from the boundaries. The sum of both solutions
has to satisfy stress free boundary conditions thereby leading to the complete solutions.
Explicit solutions for the displacements due to transient line loads are then obtained by
using Cargniard-DeHoop contour. '
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Acoustic vibrations in solid structures essentially
1. Introduction involve the propagation of wave motion through-
out the supporting media. In dealing with
_ acoustic vibrations of systems involving coupling
* ARG, AAREAAEE), AL FA of compressible fluids with plate and shell
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structures, it is important {o possess an
appreciation of the "wave view” of vibration.
Thus, understanding the response of elastic solids
to internal mechanical sources has long been of
interest to researchers in classical fields such as
acoustics, vibration, seismology, as well as
modern fields of application like ultrasonics and
acoustic emission.

Elastic wave interactions with homogeneous
elastic anisotropic media, in general, and with
layered anisotropic media, in particular, have
been extensively investigated in the past decade
or so. This advancement has been prompted at
least from a mechanics point of view, by the
increased use of advanced composite materials in
many structural applications, The effect of
imposed line load in homogeneous isotropic media
has been discussed by several investigators ever
since Lord Rayleigh discovered the existence of
surface waves on the surfaces of solids"”. An
account of the literature dealing with this
problem through 1957 can be found in Ewing,
Jardetzky and Press'®. Most of the earlier works
B followed Lamb™, who apparently was the
first to consider the motion of half space caused
by a vertically applied line load on the free
surface or within the isotropic medium. He was
able to show that displacement at large distance
consist of a series of events which correspond to
the arrival of longitudinal, shear, and Rayleigh
surface wave. For a f{ransient source loading
results can be obtained from those corresponding
to harmonic ones by a Fourier integral approach.
The resulting double integral could be evaluated
only by considering large distance. However, a
suitable deformation of the integral contour by
Cargniard-DeHoop not only resulted in considerable
analytical simplification but led to exact, closed
algebraic espression for the displacement of
time'”.

In this paper, the formal developments in
d(1~4) and
study the response of several anisotropic systems

previous works are rigorously followe

due to buried transient line loads. These include
infinite and semi-infinite, structures, The problem

is mathematically formulated based on the
equations of motion in the constitutive relations.
The internal line load will be in the form of a
normal stress load, acting at a symmetry
direction within the materials in the plane of
symmefry. The load is first described as a body
force in the equations of the motion for the
infinite media and then it is mathematically
characterized as ’artificial interface conditions”
for each semi-infinite spaces. A building block
approach is utilized in which the analysis has
begun by deriving the results for an infinite
media. Subsequently the results for semi-infinite
spaces, by wusing superposition of the infinite
medium solution together with a scattered
solution from the free surface. The sum of both
solutions has to satisfy the stress free boundary
conditions, thereby leading to a complete
solution. Consequently explicit solutions for the
displacements are obtained by using Cargniard-
DeHoop contour.

2. Problem Formulation

Consider an infinite anisotropic elastic medium
possessing orthotropic symmetry. The medium 1s
oriented with respect to the reference cartesian
coordinate system x;= (x|, %s,x3) such that the
x3 is assumed normal to its plane of symmetry

as shown in Fig. 1. The plane of symmetry

Fig. 1 An applied line load in orthotropic infinite
media
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defining the orthotropic symmetry is thus
coincident with the x;—x; plane. With respect
to this coordinate system, the equations of

L . . 1
motion in the medium are given by( )

50,», _ azu,-
89(, +f,——p atz (1)

and. from the general constitutive relations for
anisotropic media,

0,= Comen. 4,7,k 1=1,2,3 (2)

Where we used the standard contracted sub-
script notations  1—11, 2—22, 3—33, 4—23, 5—13
and 6—12. to replace fourth order {enser
cow (7. R 1=1,2,3) with ¢, (p,g=1,2,....,6).
Thus. ¢;5 stands for c¢s33, for example. Here
0, e; and wu; are the components of stress,

siramn and displacement, respectively, and p is
the material density. In Eq. (3)., 7;=2e;(i#/)
defires the engineering shear strain components.
One would like to solve the case of orthotropic
symmetry by applying constitutive Eq. (2) to the
secular Eq. (1) that is written in the expanded
form in terms of displacement components

2 2 2
5 P 0‘u
[C“ ;x% +C55 axg ]Zl] +(C13+C55) axga
0%u
:p“ﬁ—fx (3a)

g
—8};[ (c3t+ C%)aixl Juy

R ety 9wy
+{css ax%+c33 2 Jus=0 Py f3 (3b)

3’ 3t _ up
lewz Teuryzlm=e—0 —1 (3c)

where f; is defined as A=5£=0, =Q4dx)
8(xy—x§) F(#). Eq.(2.3c) represents a horizontal

shear wave equation that is independent of a
vertical shear wave and a longitudinal wave,
Since the line load has only vertical component,
Eqs.(2.3a.b) need to be considered.
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3. Solutions by Fourier transform

Formal solutions are effectuated by applying
the Fourier transform to these Egs.(3a, b) in
accordance with

U= fo u,e Vdt, u,= f_mZe_jpm'dxl (4)

The general solution of the resulting differential
equations is then sought in the form

-~ — pax.
u;,=Ue !

i=1,2,3 (5)

The steps leading to formal solutions of Egs.
(3a,b) for each of the two semi-infinite spaces
(See Fig. 1) will be outlined"”. Body force. f.

first, is deleted from Egs. (3a,b). since the body
force has' been replaced by an Tartificial
interface conditions”, which are given by

cxn Ous =—lQ6(x1)F(t), for x32xf atxy=x}
8x3 2

cn uy _ LQB(xl)F(t), for x3<xf atxy=x}
6x3 2

(6)

Infinite Media
The Eqgs. (3ab) lead to the characteristic
equation in terms of U; by substituting Egs. (4
and 5). The characteristic equation(Christoffel

Equation) yields nontrivial solutions in U,

thereby resulting in the fourth order algebraic
equation in a,

A+ A+ Az=0 (7
with its coefficients given by

A= 365

Ar=[(cp+cs)’®—cnen— clr’ — (cn+ csde

Ay = cyessn’ + (e + cs)on’ + o

(9)

that admits four solutions. The wave amplitude
ratio, W, is yielded as — Ay /A3 by solving the
characteristic equation for a, where A, is given

in Appendix. Using superposition, the formal



solutions, then, are written for the displacements
and their associated stress components as

o~ o~ _aa(IS_xg)
( U, u3) = gl(l’ I/I/q) Ullle (9

o - ay(ry=xD
(033, O13) = qﬁ___lD(qu,ng)Ulqe BAG

Finally, by applying artificial interface
condition” to Eq. (8), solutions for infinite space

can be written in terms of ¢=1,3

2cuDutiy b= F(PQle "t — g Trni=]
26‘33Dm2¢\3 p= F(p) Q[ We —pailr—xf Wie —N;,!x;—x;l]

(10)
where Dy 18 given in Appendix.

Semi-infinite Media

We now adapt the solutions of the infinite
media Eq. (10) to solve for the case where the
free boundary intercepts the propagating pulse at
some arbitrary location parallel to the plane
x3=0. It is assumed that the free boundary is
located at x3=-—d as depicted in Fig. 2. This
implies that the free boundary is located in the
upper region and thus can only interfere with
the opropagation fields in the negative x;
direction. For this case, the solution of Eq. (10)
will constitute an incident wave on a free
surface. As a result, waves will reflect from the
free boundary and propagate in the positive x3
direction. Thus, appropriate formal solutions,
superposing the incident waves and the reflected
waves, can be adapted from the solution of Eq.
(10) in accordance with

Free Surface

]
> X
P X3= %3 '

Fig. 2 Semi-infinite media

—

 in Orthotropic Medla

S —

(ui, w)= 25 (1, WUje ™™ -
+ 3 (~LWUe

( 05331 d;3) = q§,3<qu'D24) Uque ~ pa
* ‘7;.3( - qu- DZq) Ul(;)pe = pafxi—x,)
(1n

The boundary condition is given by c/rf\g——— 3§3=0
at x3=—d (12)

By imposing the boundary conditions(12) on Eq.
(11), solutions on semi-infinite space are
obtained expressible as

W= 2—61;‘(1%%;[ sign Dy (e

— paglx;— x4 —e —PH1|I:«‘-\'.'{1)

+((Dyy Dy + Dy Dyy) E{ = 2Dy3DyyEe ~ "7

+ ( (1)11D23 + D21D13)E5— ZDIIDmEDe —padx,+ d) ]
(13a)
;47‘; = —é—éfs;(bﬂm%;[Dso( Wl e "?03|X3~x§| _ W;e *ba;lxaax{ﬂ)
+ (’(D11D23 + DZIDI3)EIY—' 2D13D23E§) u/le —pa(xy+d)
+ ( (DIIDZS + D21D13)E:;_ ZDUDZIED %e —Daa(.\';ﬁ-a’)]
(13b)

where D;, and D, are given in Appendix.
4. Cargniard-DeHoop Contour Variation

Now transformations #, will be back to the

time-space domain by using Cargniard DeHoop
method. The method is based on the following
elementary property of the one-sided Laplace
transform:

For a given Laplace transforms,

U= f: u; (x,,%x5,0e” 7 dt
The inverse of the integral is
wi=ufx, %3, 0, H(—1)
where H (t—t,) is the Heavyside step function.

First, consider the Laplace transform of ;. u:

is obtained by

PR STUSSTHEXN/A 8 @A Al 5 &, 199837 977



Yong-Yun Kim

ani: f_w Uy e —p(alxrmx.)dﬂ
+ ono Uge —p(aaxz—mxx)d”

(14)

The integration in the complex #7-plane is
carried out along the (four different) paths

t+ jx,
X3

where ft=ax;—jmx;, or a= (15)
with ¢ real and positive. Substitution of (5) into
the characteristic Eg. (10) yields the fourth
order polynomial defining the Fourier parameter
7

Qx,, x5, t,m)= Byy'+ By’

) (16)
+Bz77 +Bl7]+ B():O

where B; is given in Appendix. The four root is
composed of two parabolas with respect to time
t for a certain position (x;,x3), and they are

symmetric about the imaginary # axis. Each of
the parabolas is associated with four distinct
roots of a from the characteristic Eq. (7). two
of which correspond to the lower half-space and
others to the upper half-space, because of the
boundedness of the wave. Each of the two7z
represents a separate wavefront.

Infinite Media

Now the inverse Laplace transform can be
obtained by mere inspection of Eq. (10)

4drey
Ancn =
1 on 1 on
[mer> ot " Du(n) ot P{“‘“)
1 9m 1 97 _
'[axﬁ> 2t " D) M]H“ &)
(17a)
Arcy
Wilni) dm _Wia) am
(Do) 0t " Dulary ot HUTH)
o W) 8m W) 8712
(D) 0t~ Dyln) ot U

(17b)
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and

—% - 377/
=[ 4B;n*+3B3n’ + 2 Byn+ By7]
+ [4D\f + 12iDyx, — 2(6Dyx7 (18)
— (Dy— D))t —2ix, (2D, x}
+(2D;— Dy)x3)]

where D; is given in Appendix. The t and ¢, are
the arrival times of the wave fronts. In other

words, they are the times that correspond to the

values of the imaginary 7  axis intercepts of

the two branches of 7. The notation 77+
denotes the branch of 7; to the right side of the

imaginary 7 axis and 7 denotes the branch of
7; to the left side of the imaginary 7 axis.

Semi-Infinite Media

By the same procedure, integral transform
solutions of Eq.{13a.,b) in the semi-infinite media
are inversely transformed back to the space-time

domain. The result of the wave propagation is

given by
drc
Q “i=
D,wDy+ Dy Dy + Dy Dy3— 2D Dy (77)
DDy, m
i
at
_ DDyt Dy Dy + Dy Dyy—2D1Dy (77)

37]1 ]H (t— 1)

_ DDyt Dy D+ DDy — 2Dy Dy (3)
DuoDso 72
s
ot
_ DDyt Dy Dy + Dy Dyy — 2Dy3Dys (0}
DD,
3772

]H (t—t3)
(19)

The remaining displacement #; will be optained
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by the same procedures.
6. Numerical Hllustration and Discussion

Numerical illustrations are presented for the
analysis. An InAs cubic material is chosen and its
material constants are given by c¢jy=cp=cy=
83.29% 10" N/m? cjp=c;3= cp= 45.26x 10" N/m?,
Cas= 55 = cs=39.59x 10" N/m* and p=5.67g/cm’
Fig. 3(a) represents the imaginary part of 7
variation with respect to time t along the wave
propagating direction of 10° with respect to x5
axis on x,—x3 plane. #, b, % and 4 in Fig. 3(b)
~3(c) are assigned for the arrival times of
various wave forms in displacement field, u and
w. The sharp jerks are due to the nature of the
direc delta function of the line load. All

displacements vanish at #£<¢<#;, which repre-
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Fig. 3 Various responses due to a line load in the
cubic medium of InAs

(a) Imaginary part of 1 variation versus time
(usec)
(b) Horizontal displacement #u versus time

(¢) Vertical displacement w versus time

sents anisotropy degeneracy of the material. Fig.
4 presents snap shot of absolute value of radical
displacement field at fixed time ( £ =0.2usec). A
spatial grid of 100x100 points is generated for
the first quadrant. The remaining quadrants are
then generated by the mirror of the first
quadrant. The vertical line load is located at the
origin that is the center of the picture. Since the
medium is homogeneous, the wave field does not
change as it propagates. The color scheme runs
from white (minimum) to black (maximum). In
this picture we can clearly recognize the wave
curves (three wave fronts and lacunae). The
picture shows that the contribution of the
longitudinal wave is strong at 9=0° whereas
that of the shear wave is strong at $=90°. Fig.
5 presents snap shot of absolute value of radical
displacement field at fixed time ( #=02usec).

The material properties are given as c¢j=cp=

e =2718.74x 10 N/m?, c¢p=c3=cyy= 33.0x10%°

Fig. 4 Snap shot of displacement field at ¢ =0.2usec
of InAs infinite system

Fig. 5 Snap shot of displacement field at ¢ =0.2sec
of semi-infinite system
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N/m?, cu=css= cg=281.91x10° N/m? and p=

1.7g/cm?®, In this figure, we can clearly recognize
the wave curves (surface wave and two bulk
wave forms). The surface wave peaks are
shown at inside of the longitudinal wave front
and near the horizontal plane surface.

7. Conclusion

Explicit solutions for the displacements due to
transient line loads, which include infinite, semi-
infinite spaces, are obtained by using Cargniard-
DeHoop contour. Numerical results which are
drawn from concrete examples of orthotropic
symmetry are demonstrated. These analytical
solutions are adquate for the material system
possessing orthotropic or higher symmetry, trans-
versely isotropic, cubic, and isotropic symmetry.
The solutions of the system with orthotropic
symmetry will be simplified to those of isotropic

systems by exploiting elastic properties of A and .
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Appendix

Various coefficients are given by
Ay = 055‘1'2 - C11712 -p
Ap=—jna(c3+ css)

Apn= 033.‘1’2 - 055712 —p

Dy, = jnci3— cpa W,

Doy = cs5(jaW,~ ay,)
Dy=aiW— a3,

D= Dy Doz — Dy Dy3
By= Dt - Dyt + 0°x3
B, = j(4Dx,f — 2Dy, x5t
By = (Dyx}— 6D 1) + (Dy 22 + Dyxy)xs
By =j(2Dy 2,25 — 4Dyt
B,= Dix— sz%xg + Dyx}
D, = c33¢55

Dy = cfy+2cp305— cucn
Dy=—p(cu+ cs5)

Dy= encess

Ds= p(cy + c55)



