• Title/Summary/Keyword: explicit approach

Search Result 328, Processing Time 0.032 seconds

A Study on the Algorithm for Nonlinear Dynamic Response Analysis of Shell Structure (쉘 구조물의 비선형 동적응답 해석을 위한 Algorithm에 관한 연구)

  • 최찬문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.2
    • /
    • pp.164-176
    • /
    • 1996
  • The main intention of this paper is to develop and compare the algorithm based on finite element procedures for nonlinear transient dynamic analysis which has combined effects of material and geometric nonlinearities. Incremental equilibrium equations based on the principle of virtual work are derived by the finite element approach. For the elasto - plastic large deformation analysis of shells and the determination of the displacement-time configuration under time-varying loads, the explicit, implicit and combined explicit-implicit time integration algorithm is adopted. In the time structure is selected and the results are compared with each others. Isoparametric 8-noded quadrilateral curved elements are used for shell structure in the analysis and for geometrically nonlinear elastic behaviour, a total Lagrangian coordinate system was adopted. On the other hands, material nonlinearity is based on elasto-plastic models with Von-Mises yield criteria. Thus, the combined explicit-implicit time integration algorithm is benefit in general case of shell structure, which is the result of this paper.

  • PDF

Explicit Design of Uniformly Rough Pipe

  • Yoo, Dong-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.107-124
    • /
    • 1996
  • Pipe design normally requires pump power, discharge or pipe diameter for each condition given. Due to several investigators the pipe friction factor con now be estimated by explicit way for a wide range of flow condition. In various problems of pipe design, however, the flow condition cannot be pre-determined even for a uniformly rough pipe. In these cases a lot of iterations are often required to have an accurate solution with ordinary approach. This paper presents the direct computation method of discharge and pipe diameter without any iteration process. Introducing the power law of friction factor, various non-dimensional physical numbers are derived such as power-diameter number, power-discharge number, diameter-slope number and discharge-slope number. One of the physical numbers concerned with discharge or pipe diameter can be related to a combination of the other in an explicit way.

  • PDF

A novel approach to the form-finding of membrane structures using dynamic relaxation method

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Gholami, Hossein;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.123-141
    • /
    • 2017
  • Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations, and they can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DR) is one of the powerful and simple explicit processes. The important point is that the DR does not require to store the global stiffness matrix, for which it just uses the residual loads vector. In this paper, a new approach to the DR method is expressed. In this approach, the damping, mass and time steps are similar to those of the traditional method of dynamic relaxation. The difference of this proposed method is focused on the method of calculating the damping. The proposed method is expressed such that the time step is constant, damping is equal to zero except in steps with maximum energy and the concentrated damping can be applied to minimize the energy of system in this step. In this condition, the calculation of damping in all steps is not required. Then the volume of computation is reduced. The DR method for form-finding of membrane structures is employed in this paper. The form-finding of the three plans related to the membrane structures with different loading is considered to investigate the efficiency of the proposed method. The numerical results show that the convergence rate based on the proposed method increases in all cases than other methods.

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

Basic Equations for Explicit Design of Uniformly Rough Pipe (균일조도관의 양해법 설계 기준식)

  • 유동훈
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.175-189
    • /
    • 1995
  • Pipe design normally requires pump power, discharge rate or pipe diameter for each condition given. Due to several investigators the pipe friction factor can now be estimated by explicit way when the flow condition is provided. In various problems of pipe design, however, the flow condition cannot be pre-determined even for the uniformly rough pipe. In these cases a lot of iterations are often required to have an accurate solution with ordinary approach. This paper presents the explicit way of estimating the discharge rate and pipe diameter without any iteration process being related to non-dimensional physical numbers, power-diameter number, power-discharge number, and discharge-slope number, which enable to develop explicit forms of equations.

  • PDF

Explicit Design of Commercial Pipe on a Slope with Pumping Power (동력경사 상용관의 양해법 설계)

  • Yu, Dong-Hun;Gang, Chan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.495-501
    • /
    • 1997
  • Pumping power being given, traditional method requires an iteration process for the solution of discharge and pipe diameter. Yoo and Kang (1996) have developed explicit equations for the estimation of discharge and pipe diameter for the cases of uniformly rough pipe on a sloping bed with a pumping power. The use of poser law for the estimation of friction factor enabled to develop the explicit form of equations. Yoo (1995a) has suggested the mean friction factor method for the estimation of friction factor of commercial pipe or composite surface pipe. With the same approach, the present work has developed the explicit equations of discharge or pipe diameter for the general case of commercial pipe on a sloping bed with a pumping power by adopting the mean friction factor method.

  • PDF

Explicit Design of Uniformly-Rough Pipe on a Slope with Pumping Power (균일조도 동력경사관의 양해법 설계)

  • 유동훈;강찬수
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.163-176
    • /
    • 1996
  • When a pipe is deployed on a sloping bed, pumping power required for a discharge can be estimated immediately without any iteration process with an explicit form of a friction factor equation. Pumping power being given, however, traditional method requires an iteration process for the solution of discharge and pipe diameter even for the uniformly-rough pipe. You (1955b) has suggested explicit equations for the estimation of discharge and pipe diameter particularly for the cases of pipe on a slopintg bed without pumping and pipe on a horizontal bed with a pumping power. Based on his approach and previous results, the present researchers have developed explicit equations of discharge and pipe diameter for the general case of pipe on a sloping bed with a pumping power. The equations of boundary criteria are also presented in explicit way which render proper choice of various equations suitable for the flow condition between five characteristics. Verification studies are also carried out by applying the explicit equations to a practical example.

  • PDF

Quasi-Likelihood Approach for Linear Models with Censored Data

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.219-225
    • /
    • 1998
  • The parameters in linear models with censored normal responses are usually estimated by the iterative maximum likelihood and least square methods. However, the iterative least square method is simple but hardly has theoretical justification, and the iterative maximum likelihood estimating equations are complicatedly derived. In this paper, we justify these methods via Wedderburn (1974)'s quasi-likelihood approach. This provides an explicit justification for the iterative least square method and also directly the iterative maximum likelihood method for estimating the regression coefficients.

  • PDF

A Level Crossing Approach to the Analysis of Finite Dam

  • Kim, Sunggon;Lee, Eui-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.405-413
    • /
    • 2002
  • We consider a finite dam with general inputs and adopt the level crossing approach to obtain explicit formulas of the expected wet period, the expected loss of water due to overflows in a wet period, and the long-run proportion of loss in inputed water.

Sensitivity Measurement of Self-Tunig Controller to Modelling Errors (Power Spectrun Approach) (모델 오차에 대한 자기 동조 제어기의 민감도 측정)

  • 나종래;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.174-178
    • /
    • 1987
  • In the design of reference model based STC (self-tuning controllers), parameters of the controllers are determined not from the true plant but from the estimated model. In this paper, we suggest a power spectrum estimation method for visualling the sensitivity of the closed loop system without knowing the explicit original plant.

  • PDF