• Title/Summary/Keyword: expansion of steel

Search Result 394, Processing Time 0.029 seconds

An Experimental Study on the Steel Corrosion Control in Concrete by using the Sacrificial Anode System (희생양극법을 응용한 콘크리트중의 철근부식 억제에 대한 실험적 연구)

  • 문한영;김성수;류재석;김홍삼;김성섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.191-196
    • /
    • 1997
  • Steel is the most used as materials for construction and corrosion expansion of steel due to outdoor corrosive environmental factor bring serious problem on the durability of concrete structures time after time. It is the purpose of this study to see whether it is effective of not, when sacrificial anode method is adapted. Indoor accelerated corrosion testing was carried out to see its effective in a short term. From the mid result, potential of steel in concrete in case of adapting sacrifice anode method satisfacts protection standard value (less than-850mV vs CSE), therefore sacrificial anode method is considered as a proper protection steps against corrosion of steel.

  • PDF

Evaluation of Concrete Cone Breakout Strength of Expansion Anchors (익스팬션 앵커의 콘크리트 콘 파괴강도 평가)

  • Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.649-660
    • /
    • 2003
  • The paper presents an evaluation of the tensile strength of the expansion anchor that can cause failure in the concrete based on the design of the anchorage. Tests of the heavy-duty anchor and the wedge anchor that are domestically manufactured and installed in plain concrete members are conducted to probe the effects of the embedded depth, concrete strength, and anchors spacing. The design of post-installed steel anchors is presented using the Concrete Capacity Design (CCD) approach. The CCD method is applied to predict the concrete failure load of the expansion anchor in plain concrete under monotonic loading for important applications. The concrete tension capacity of the fastenings with heavy-duty anchors and wedge anchors in plain concrete predicted using the CCD method is compared with the test results. For the CCD method, a normalization coefficient of 9.94 is appropriale for the nominal concrete breakout strength of an anchor or a group of wedge anchors in tension. On the other hand, a normalization coefficient of 11.50 is appropriate for the nominal concrete breakout strength of an anchor or a group of heavy-duty anchors in tension.

A Study on the Rebar Corrosion Control in Concrete by Using the Sacrificial Anode Cathodic Protection (희생양극법을 이용한 콘크리트중의 철근부식 억제 효과에 대한 연구)

  • 문한영;김성수;김홍삼;김성섬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.299-302
    • /
    • 1997
  • Generally the corrosion expansion of the steel due to outdoor corrosive environmental factor brings about serious problem on the durability of concrete structures. It is the purpose of this study to see whether adapted sacrificial anode method is effective or not. from the experimental results. the potential of steel in concrete in case of adapting the sacrificial anode method satisfies protection standard value (less than -850mV vs CSE).

  • PDF

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

Development of Hole Expansion Test for Sheet Materials Using Pattern-Recognition Technique (형태 인식 기술을 이용한 판재의 홀 확장성 평가 시스템 개발)

  • Jang, Seung Hyun;Kim, Chan Il;Yang, Seung Han;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.161-168
    • /
    • 2013
  • Nowadays, one of the most interested area of automobile industry is the production of vehicle which has collision safety and ability to produce less amount of $CO_2$. The achievement of such a dual performance is done by choosing the materials like dual phase steel, ferrite bainite steel, etc. These steels have been used in automotive chassis and body parts, and also used to be formed by hole flanging to meet the goal of strength and design requirement. The formability of sheet material was experimented by hole expansion test and the judgement relies on human eye and his experience. This manual judgement involves many errors and large deviation. This paper develops the automatic crack recognition system which finds a crack based on CCD image to complement the problem of the current method depending on human's sense.

Irradiation Behavior of Reactor Pressure Vessel SA508 class 3 Steel Weld Metals (압력용기강재 SA508 class 3 용착금속의 조사거동)

  • Koh, Jin-Hyun;Park, Hyoung-Keun;Kim, Soo-Sung;Hwang, Yong-Hwa;Seo, Yun-Seok
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • Irradiation behavior of the reactor pressure vessel SA508 class 3 steel weld metals was examined by Charpy V Notch impact specimens. The specimens were exposed to a fluence of $2.8{\times}1019$ neutrons(n)/$cm^2$(E>1 MeV) at $288^{\circ}C$. The irradiation damage of weld metal was evaluated by comparison between unirradiated and irradiated specimens in terms of absorbed energy and lateral expansion. The specimens for neutron irradiation were welded by submerged arc welding process at a heat input of 3.2 kJ/mm which showed good toughness in terms of weld microstructure, absorbed energy and lateral expansion. The post-irradiation Charpy V notch 41J and 68J transition temperature elevation were $65^{\circ}C$ and $70^{\circ}C$, respectively. This elevation was accompanied by a 20% reduction in Charpy V notch upper shelf energy level. The lateral expansion at 0.9mm irradiated Charpy specimens showed temperature elevation of $65^{\circ}C$ and was greatly decreased due to radiation damage.

Evaluation of Seismic Performance of Valve Chamber System by Shaking Table Tests (진동대 실험을 통한 밸브실 시스템의 내진성능 평가)

  • Young-Soo Jeong;Kyeong-Seok Lee;Jin-Seok Yu;Hyung-Chae Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The structural safety of expansion joints for piping systems has been drawing attention owing to ruptures and leaks of water pipes caused by earthquakes and road subsidence at soft ground. In general, metal bellows are installed as expansion joints to prevent various damages in the piping system. In this study, the seismic performance of a valve chamber system was evaluated by performing earthquake shaking table tests. To validate the benefits to structural safety of metal bellows in connecting steel pipes to valve chambers, the seismic tests were conducted on expansion joints (bellows) and general pipping, and the results were compared for durability. Strain gauges were attached to measure the effects of the input motion. As a result of the shaking table test, it was confirmed that the strain of the valve chamber structure and inflow or outflow steel pipes were decreased in 1/100, 1/20 by applied to the expansion joints.

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent (CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구)

  • Choi, Se-Jin;Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

The Investigation of the Plasma Sprayed Coatings for the Application of OG Cooling Tube in Steel Making Plant

  • Kim, HyungJun;Kwon, YoungGak
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • Several plasma-sprayed ceramic coatings with two- and three-layers were characterized and tested for the application of cooling tube coatings of oxygen convert gas recovery system (OG cooling system) in the steel making plant. Thermal cycling tests using a torch heating with compressed air cooling were carried out and characterized before and after the tests. The effects of metallic bond coat as well as ceramic top coat were also studied. Possible failure mechanisms with low carbon steel substrate were assessed in term of microstructure, porosity, bond strength, thermal expansion coefficient, and the phase transformation. Finally, the results of field tests at the OG cooling system are presented and discussed their microstructural degradation. Test results have shown that three-layered coatings perform better than two-layered coatings.

A Study on the Properties of Electric Arc Furnace Slag and Converter Slag Aggregate (전기로 및 전로슬래그 골재의 품질에 대한 고찰)

  • Yoo, Jung-Hoon;Cho, Young-Kwon;Kim, Kwan-Ho;Lee, Joon-Gu;Shim, Jong-Sung;Park, Cheol-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.149-152
    • /
    • 2006
  • In this paper, we researched and compared the properties of steel slag(is divided with electric arc furnace slag and converter slag) as concrete aggregate by measuring physical and chemical characteristics of it. The steel slag mainly contains SiO2 and CaO as the chemical composition. The reaction with water and a little of free CaO in the slag causes slag's volume to expanse. Therefore, we used several aging methods in order to decrease the characteristics of slag volume expansion. The physical properties of steel slag aggregate is researched and then the strength of concrete with the steel slag aggregate is measured.

  • PDF