DOI QR코드

DOI QR Code

Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent

CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구

  • 최세진 ((재)포항산업과학연구원, 강구조연구소) ;
  • 안중길 (한국철도공사) ;
  • 박기태 (한국건설기술연구원) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2013.08.07
  • Accepted : 2013.09.09
  • Published : 2014.01.30

Abstract

Expansion agent is a very effective admixture for prevention of cracking due to autogenous/drying shrinkage and this can induce internal chemical prestress to embedded reinforcement. In this paper, tension-softening and hardening in cement mortar with steel and CSA expansion agent are experimentally evaluated. Cement mortar with steel reinforcement is prepared and tensile strength test is performed for evaluation of cracking and tensile behavior. In spite of slightly reduced strength and elasticity in CSA mortar, significantly increased tension-hardening behavior is evaluated in CSA mortar with induced chemical prestress. Furthermore previous tension softening models are compared with the test results and improvement are proposed.

팽창재는 콘크리트의 건조/자기수축으로 인한 균열에 매우 효과적인 혼화재료이며 콘크리트 내부 철근에 화학적 프리스트레스를 인가할 수 있다. 본 논문에서는 CSA 팽창재에 의해 화학적 프리스트레스가 도입된 모르타르의 인장경화성능을 평가하였다. 철근으로 내부구속이 이루어진 철근 모르타르 시편에 대하여 일축인장시험을 수행하였으며, 균열거동 특성과 인장경화 특성을 분석하였다. CSA 모르타르에서는 압축강도 및 탄성계수는 약간 감소하였으나, 화학적 압축응력이 철근에 도입되었으며, 일반 모르타르 부재에 비해 167.5% 초기균열하중이 증가하였다. 높은 인장경화특성을 평가하였으며, 기존의 인장연화모델과 실험값을 비교하여 기존 제안식의 보완점을 제시하였다.

Keywords

References

  1. ACI Committee 544 (1999), Design Consideration for Steel Fiber Reinforced Concrete, ACI 544.4R.
  2. Adebar, P., Mindess, S., St. Pierre, D., Olund, B. (1997), Shear tests of fiber concrete beams without stirrups, ACI Structural Journal, 94(1), 68-76.
  3. Ahn, J. K. (2003), A Study on Evaluation of Crack Resistance in Chemically Prestressed Mortar, Master Thesis, Yonsei University, 58-72 (in Korean).
  4. Ahn, J. K., Shim, B., Song, H. W., Byun, K. J. (2003), A study on fracture characteristics of chemically prestressed mortar, KCI Spring Conference, 15(1), 828-832 (in Korean).
  5. Andac, O., Glasser, F. P. (1994), Polymorphism of Calcium Sulfoaluminate ($Ca_4Al_6O_{16}{\cdot}O_3$) and its solid solution, Advances in Cement Research, 22(6), 57-60.
  6. Cho, C. G., Han, S. J., Kwon, M. H., Lim, C. K. (2012), Seismic performance evaluation of reinforced concrete columns by applying steel fiber-reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248 (in Korean). https://doi.org/10.4334/JKCI.2012.24.3.241
  7. Cho, I. H., Yang, J. S., Kim, J. H. (1999), A Field Application of Non-Shrinkage High Strength Concrete Using CSA Expansive Additives, Proceedings of KCI, 11(2), 77-80 (in Korean).
  8. Han, C. G., Bahn, H. Y., Jun, B. C., Hong, S. H. (1998), A Study on the Properties of High Performance Concrete Using CSA Expansive Additivies, Journal of Architecture Institute of Korea, 14(11), 66-70 (in Korean).
  9. Han, C. G., Han, M. C., Park, C. J. (2011), Study on the Estimation of Drying Shrinkage of the Concrete Using CSA Expansive Additive Based on Regression Analysis, Journal of Architecture Institute of Korea, 27(9), 109-116 (in Korean).
  10. Kang, S. T., Ryu, G. S. (2011), The effect of steel-fiber contents on the compressive stress-strain relation of ultra high performance cementitious composites (UHPCC), Journal of the Korea Concrete Institute, 23(1), 67-75 (in Korean). https://doi.org/10.4334/JKCI.2011.23.1.067
  11. Kim, Y. K. (2003), A Study on Evaluation of Crack Resistance in Chemically Prestressed Steel Fiber Reinforced Concrete, Master Thesis, Yonsei University (in Korean).
  12. Maltese, C., Pistolesi, C., Lolli, A., Bravo, A., Cerulli, T., Salvioni, D. (2005), Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars, Cement and Concrete Research, 35(2), 2244-2251. https://doi.org/10.1016/j.cemconres.2004.11.021
  13. Myoju, F., Xiao, H., Toshiharu, S. (2001), Effect of Multi-Axial Restraint against Cracking Resistance in Bending Member of Expansive Concrete, Proceeding of Japan Concrete Institute, 23(3), 589-594.
  14. Nagataki, S., Gomi, H. (1998), Expansive admixtures (mainly ettringite), Cement and Concrete Composites, 20(2-3), 163-170. https://doi.org/10.1016/S0958-9465(97)00064-4
  15. Nam, S. H., Song, H. W., Byun, K. J., Maekawa, K. (2006), Seismic analysis of underground reinforced concrete structures considering elasto-plastic interface element with thickness, Engineering Structures, 28(2), 1122-1131. https://doi.org/10.1016/j.engstruct.2005.12.003
  16. Okamura, H., Maekawa, K. (1991), Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Tokyo (Japan), Gihodo-Shuppan, 102-181.
  17. Park, H. Y., Kim, C. Y., Choi, I. C., Bae, S. W., Ryu, J. H. (2001), Chemically prestressed precast concrete box culvert with expansive additives, Journal of the Korea Concrete Institute, 13(1), 43-51.
  18. Sahamitmongkol, R., Tanaka, Y., and Kishi, T. (2002), Cracking Behaviors of chemical prestressed reinforced concrete members, JSCE Fourth International Summer Symposium, Kyoto, JAPAN, 5-13 (in Japanese).
  19. Shawky, A. A. (1994), Nonlinear Static and Dynamic Analysis for Underground Reinforced Concrete. Ph.D. Dissertation, Tokyo (Japan), University of Tokyo, 22-36 (in Japanese).
  20. Shim, B., Kim, Y. K., Song, H. W. (2004), A Study on Crack Behavior of Chemically Prestressed Steel Fiber Reinforced Concrete, KCI Fall Conference, 16(2), 121-124 (in Korean).
  21. Yoo, S. W., Kwon, S. J., Jung, S. H. (2012), Analysis technique for autogenous shrinkage on high performance concrete with mineral and chemical admixtures, Construction and Building Materials, 34(9), 1-10. https://doi.org/10.1016/j.conbuildmat.2012.02.005

Cited by

  1. Study on the Effect of Isotropic Initial Stress on the Anchoring Performance of Self-Expanding Bolts vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6678947