• Title/Summary/Keyword: exfoliation

Search Result 393, Processing Time 0.028 seconds

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals (유무기 페로브스카이트 나노결정의 박리화에 의한 양자구속효과)

  • Choe, Hyeon Jeong;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.496-501
    • /
    • 2021
  • Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.

A Study on Mechano-chemical Ball Milling Process for Fabricating Tungsten Disulfide Nanosheets (이황화텅스텐 나노시트 제조를 위한 기계화학적 볼밀링 공정 연구)

  • Kim, Seulgi;Ahn, Yunhee;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.376-381
    • /
    • 2022
  • Tungsten disulfide (WS2) nanosheets have attracted considerable attention because of their unique optical and electrical properties. Several methods for fabrication of WS2 nanosheets have been developed. However, methods for mass production of high-quality WS2 nanosheets remain challenging. In this study, WS2 nanosheets were fabricated using mechano-chemical ball milling based on the synergetic effects of chemical intercalation and mechanical exfoliation. The ball-milling time was set as a variable for the optimized fabricating process of WS2 nanosheets. Under the optimized conditions, the WS2 nanosheets had lateral sizes of 500-600 nm with either a monolayer or bilayer. They also exhibited high crystallinity in the 2H semiconducting phase. Thus, the proposed method can be applied to the exfoliation of other transition metal dichalcogenides using suitable chemical intercalants. It can also be used with high-performance WS2-based photodiodes and transistors used in practical semiconductor applications.

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite (천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅)

  • Gyuri, Kim;Yeongwon, Kwak;Ho Young, Jun;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

Clinical Assessment of Lip Balm Containing Exfoliation Complex to Improve Wrinkles, Elasticity, and Hydration of Lips (입술의 주름, 탄력, 보습 개선을 위한 각질 박리 복합물이 함유된 립밤의 임상 효능 평가)

  • Jiye Park;Jae Young Shin;Jinyong Lee;Myoung Jin An;Nae Gyu Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.355-364
    • /
    • 2023
  • Lips have a unique desquamation process and moisturizing properties that are structurally different from ordinary skin. In particular, the turnover cycle of the stratum corneum is fast and the outermost stratum corneum is thin, so the amount of keratin is relatively high, and there are no skin appendages, so it is very vulnerable to maintaining moisture. In this study, we set three targets for lip care : stratum corneum, moisture, and barrier, and aimed to identify the potential of three target-specific ingredients for lips improvement. We confirmed the exfoliating, moisturizing, and barrier improvement efficacy of three target-specific ingredients which also have mild exfoliating effect. Specifically, we verified that Bacillus clausii extract improved skin exfoliation, gluconolactone improved skin moisture retention, and serine reinforced skin barrier function. To test the in vivo efficacy of the complex composed of three target-specific ingredients on the human lips, the lip balm manufactured with non-irritating range of concentration was applied, and we confirmed that it was effective in improving lip exfoliation·moisturizing·elasticity·wrinkles. Consequently, it was confirmed that the beauty and health indicators of the lips could be improved through the exfoliation-moisturization-barrier care of the lips and these ingredients were applied to LG H&H LIPCERIN products.

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.204-207
    • /
    • 2012
  • Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.

Chemically Modified Graphene and Their Hybrid Materials: Toward Printed Electronics

  • Jeong, Seung-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.71-71
    • /
    • 2012
  • Chemically modified graphene has been great interest for the application of printed electronics using solution prossesable technique. Here, we demonstrate a large area graphene exfoliation method with fewer defects on the basal plane by application of shear stress in solution to obtain high quality reduced graphene oxide (RGO). Moreover, we introduce a novel route to preparing highly concentrated and conductive RGO in various solvents by monovalent cation-${\pi}$ interaction. Noncovalent binding forces can be induced between a monopole (cation) and a quadrupole (aromatic ${\pi}$ system). The stability of this RGO dispersion was more sensitive to the strength of the cation-${\pi}$ interactions than to the cation-oxygen functional group interactions. The RGO film prepared without a post-annealing process displayed superior electrical conductivity of 97,500 S/m. Our strategy can facilitate the development of large scalable production methods for preparing printed electronics made from high-quality RGO nanosheets.

  • PDF

Tensile Analysis of Plasma Spray Coating Material by Classification of AE Signals (Acoustic Emission 파형분류에 의한 플라즈마 용사 코팅재의 인장해석)

  • ;;K. ONO
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.60-65
    • /
    • 2001
  • Thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, Stacking of the particles makes coating. In this study, the exfoliation of $Al_2$O$_3$ and Ni-4.5wt.%Al thermally sprayed coating which were deposited by an atmospheric plasma spray apparatus are investigated using an AE method. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. The wave forms of AE generated from the three coating specimens can be classified by FFT analysis into two types which low frequency(type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip or the resultant fracture of coating. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF

Thermal, Dielectric Properties Characteristics of Epoxy-nanocomposites for Organoclay of Several Types (여러종류의 Organoclay에 대한 에폭시-나노콤포지트의 열적, 유전특성에 관한 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Nanostructured materials are attracting increased interest and application. Exciting perspectives may be offered by electrical insulation. Epoxy/Organoclay nanocomposites may find new and upgraded applications in the electrical industry, replacing conventional insulation to provide improved performances in electric power apparatus, e.g, high voltage motor/generator stator winding insulation, dry mold transformer, etc. In the paper work, the electrical and thermal properties of epoxy/organoclay nanocomposites materials were studied. The electrical insulation characteristics were analyzed through the permittivity characteristics. by analyzing the permittivity spectra, it was found that dielectric constant becomes smaller with increase frequency and becomes larger with increase temperature. This indicates restriction of molecular motion and strong bonds at the epoxy/organoclay nanocomposites. The morphology of nanocomposites obtained was examined using TEM and X-ray diffraction. It has been shown that the presence of polar groups leads to an increased gallery distance and partial exfoliation. Nevertheless, full exfoliation of clay platelets has not been achieved.

Thermal Property of 2D-Disordered Tungsten Chalcogenides (2차원적으로 무질서화된 텅스텐 칼코겐화물의 열적특성에 관한 연구)

  • Kim, Jong-Young;Jang, Kyoung-Ju;Pee, Jae-Hwan;Cho, Kwang-Yeon;Choi, Soon-Mok;Seo, Won-Sun;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.132-135
    • /
    • 2010
  • Thermal properties of layered metal chalcogenides such as $WT_2$ (T=S,Se) with two-dimensionally disordered structure were evaluated. Thermal conductivity shows a marked decrease after exfoliation and subsequent restacking because of random stacking of two-dimensional crystalline sheet, which circumvents thermal conduction pathways along longitudinal direction in anisotropic materials.