Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.9.496

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals  

Choe, Hyeon Jeong (Department of Materials Science and Engineering, Chungnam National University)
Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.9, 2021 , pp. 496-501 More about this Journal
Abstract
Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).
Keywords
$CH_3NH_3PbBr_3$; exfoliation; quantum confinement; perovskite; nanocrystals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013).   DOI
2 S. D. Stranks and H. J. Snaith, Nat. Nanotechnol., 10, 391 (2015).   DOI
3 J. Z. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Adv. Mater., 27, 7162 (2015).   DOI
4 M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, J.-H. Bae, S. K. Kwak, D. S. Kim and C. Yang, Science, 369, 1615 (2020).   DOI
5 K. Lin, J. Xing, L. N. Quan, F. P. G. D. Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, Nature, 562, 245 (2018).   DOI
6 R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G. Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun and Y. Zheng, Adv. Funct. Mater., 26, 7708 (2016).   DOI
7 A. Kirakosyan, S. Yun, S.-G. Yoon and J. Choi, Nanoscale, 10, 1885 (2018).   DOI
8 A. Kirakosyan, M.-G. Jeon, C.-Y. Kim, Y. Kim and J. Choi, CrystEngComm, 23, 4434 (2021).   DOI
9 J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, Adv. Mater., 29, 1603885 (2017).   DOI
10 A. Kirakosyan, N. D. Chinh, M. R. Sihn, M G. Jeon, J. R. Jeong, D. Kim, J. H. Jang and J. Choi, J. Phys. Chem. Lett., 10, 4222 (2019).   DOI
11 X. Xu, X. Zhang, W. Deng, L. Huang, W. Wang, J. Jie and X. Zhang, ACS Appl. Mater. Interfaces, 10, 10287 (2018).   DOI
12 A. Kirakosyan, J. Kim, S. W. Lee, I. Swathi, S. G. Yoon and J. Choi, Cryst. Growth Des., 17, 794 (2017).   DOI
13 S. Yun, A. Kirakosyan, S. G. Yoon and J. Choi, ACS Sustainable Chem. Eng., 6, 3733 (2018).   DOI
14 M. G. Jeon, S. Yun, A. Kirakosyan, M. R. Sihn, S. G. Yoon and J. Choi, ACS Sustainable Chem. Eng., 7, 19369 (2019).   DOI
15 A. Kirakosyan, Y. Kim, M. R. Sihn, M.-G. Jeon, J.-R. Jeong and J. Choi, ChemNanoMat, 6, 1863 (2020).   DOI
16 M. R. Sihn, A. Kirakosyan, M.-G. Jeon and J. Choi, ChemComm, 57, 5055 (2021).