Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.4.204

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.4, 2012 , pp. 204-207 More about this Journal
Abstract
Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.
Keywords
Nanocomposite; Epoxy; Organoclay; Kissinger equation; Ozawa equation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Imai, F.Sawa, T.Ozaki, T.Shimizu, R. Kido, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 445 (2006) [DOI:10.1109/TDEI.2006.1624291].   DOI   ScienceOn
2 C. Zou, J.C. Fothergill and S. W. Rowe, IEEE Trans. Dielectr. Electr. Insul., 15, 106 (2008) [DOI: 10.1109/T-DEI.2008.4446741].   DOI
3 L. Tsou, J. A. Sauer and M. Hara, J. Polym. Sci.: Part B, 38, 1369 (2000) [DOI: 10.1002/(SICI)1099-0488(20000515)].   DOI
4 J. Y. Lee, M. J. Shim and S. W. Kim, J. Korean Ind. & Eng. Chem., 5, 90 (1994).
5 R. B. Prime, Thermal Characterization of Polymeric Materials, E. A. Turi (ed.), Academic Press, New York (1982)
6 J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: 10.1002/pen.11592].   DOI
7 T. Seckin, A. Gultek, M. G. Icduygu and Y. Onal, J. Appl. Polym. Sci., 84, 164 (2002) [DOI: 10.1002/app.10289].   DOI   ScienceOn
8 F. Lin, G. S. Bhatia and J. D. Ford, J. Appl. Polym. Sci., 49, 1901 (1993) [DOI: 10.1002/app.1993.070491105].   DOI   ScienceOn
9 J. Y. Lee and H. K. Lee, Mater. Chem. Phys., 85, 410 (2004) [DOI: http://dx.doi.org/10.1016/j.matchemphys.2004.01.032].   DOI   ScienceOn
10 D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI:10.1002/app.10166].   DOI   ScienceOn
11 L. Zhang, Y. Wang, Y. Wang, Y. Sui and D. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: 10.1002/1097-4628(20001209)].   DOI   ScienceOn
12 K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: 10.1002/polb.1108].   DOI   ScienceOn
13 J. J. Park, S. S. Kwon and J. Y. Lee, Trans. Electr. Electron. Mater. 12, 135 (2011) [DOI: http://dx.doi.org/10.4313/TEEM.2011.12.4.135].   DOI   ScienceOn
14 T. Ozawa, Polymer 12, 150 (1971) [DOI: http://dx.doi.org/10.1016/ 0032-3861(71)90041-3].   DOI   ScienceOn