DOI QR코드

DOI QR Code

천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite

  • 김규리 (경상국립대학교 화학공학과) ;
  • 곽영원 (경상국립대학교 화학공학과) ;
  • 전호영 (경상국립대학교 화학공학과) ;
  • 최창호 (경상국립대학교 화학공학과)
  • Gyuri, Kim (Department of Chemical Engineering, Gyeongsang National University) ;
  • Yeongwon, Kwak (Department of Chemical Engineering, Gyeongsang National University) ;
  • Ho Young, Jun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Chang-Ho, Choi (Department of Chemical Engineering, Gyeongsang National University)
  • 투고 : 2022.10.30
  • 심사 : 2022.12.06
  • 발행 : 2022.12.30

초록

그래핀의 우수한 기계적, 전기적, 열적 성질은 최근 몇 년 동안 여러 연구 분야에서 지대한 관심을 불러일으켰다. 그래핀을 생산하는 대표적인 방법인 습식공정 중 액상박리(liquid-phase exfoliation, LPE)는 초음파 및 높은 전단응력을 이용하여 벌크흑연을 그래핀으로 박리하는 기술이다. 액상박리에 의해 생산된 그래핀 분산액은 그래핀 잉크로 전환되어 그 활용폭을 더 넓힐 수 있는 장점이 있지만 고품질의 그래핀을 생산하고 가격경쟁력을 확보해야 한다. 위 조건을 만족하기 위해서 그래핀을 효율적으로 박리할 수 있는 공정 확보와 더불어 상대적으로 가격이 저렴한 천연흑연 기반의 그래핀 분산액 및 잉크를 생산해야 한다. 본 연구에서는 합성흑연 보다 약 3배 정도 저렴하고 그 크기는7배 이상 큰 천연흑연을 흐름반응기 액상박리 공정을 이용하여 박리를 시도하고 공정의 최적화와 박리된 그래핀의 구조적, 전기적 특성을 분석하였다. 천연흑연 기반 그래핀의 전기적 특성을 분석하기 위해 잉크 정제화 공정을 거쳐 그래핀 잉크를 생산하고 인쇄 장비를 사용하여 그래핀 패턴을 제작하였다. 본 연구를 통해 보다 경제적인 그래핀 분산액 및 잉크를 생산하고 그래핀 인쇄 소자를 개발할 수 있는 방법을 제시할 수 있을 것으로 기대된다.

The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

키워드

과제정보

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-003) This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2022R1F1A1068280)

참고문헌

  1. Garcia de Abajo, F. J., "Graphene plasmonics: challenges and opportunities," ACS Photonics, 1(3), 135-152 (2014).  https://doi.org/10.1021/ph400147y
  2. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T. S., and Ferrari, A. C., "Inkjet-printed graphene electronics," ACS Nano, 6(4), 2992-3006 (2012).  https://doi.org/10.1021/nn2044609
  3. Coleman, J. N., "Liquid exfoliation of defect-free graphene," Acc. Chem. Res., 46(1), 14-22 (2013).  https://doi.org/10.1021/ar300009f
  4. Cohen-Tanugi, D., and Grossman, J. C., "Mechanical strength of nanoporous graphene as a desalination membrane," Nano Lett., 14(11), 6171-6178 (2014).  https://doi.org/10.1021/nl502399y
  5. Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., and Lee, T., "The application of graphene as electrodes in electrical and optical devices," Nanotechnology, 23(11), 112001 (2012). 
  6. Bahadir, E. B., and Sezginturk, M. K., "Applications of graphene in electrochemical sensing and biosensing," Trends Anal. Chem., 76, 1-14 (2016).  https://doi.org/10.1016/j.trac.2015.07.008
  7. Falkovsky, L. A., "Optical properties of graphene," J. Phys. Conf. Ser., 129(1), 012004 (2008). 
  8. Li, X., and Zhi, L., "Graphene hybridization for energy storage applications," Chem. Soc. Rev., 47(9), 3189-3216 (2018).  https://doi.org/10.1039/c7cs00871f
  9. Pena-Bahamonde, J., Nguyen, H. N., Fanourakis, S. K., and Rodrigues, D. F., "Recent advances in graphene-based biosensor technology with applications in life sciences," J. nanobiotechnology, 16(1), 1-17 (2018).  https://doi.org/10.1186/s12951-017-0328-8
  10. Obraztsov, Alexander N., "Making graphene on a large scale," Nat. Nanotechnol., 4(4), 212-213 (2009).  https://doi.org/10.1038/nnano.2009.67
  11. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., and Coleman, J. N. "High-yield production of graphene by liquid-phase exfoliation of graphite," Nat. Nanotechnol., 3(9), 563-568 (2008).  https://doi.org/10.1038/nnano.2008.215
  12. Shi, P. C., Guo, J. P., Liang, X., Cheng, S., Zheng, H., Wang, Y., and Xiang, H. F., "Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method," Carbon, 3(9), 507-513 (2018). 
  13. Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O'Neill, A., and Coleman, J. N., "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids," Nat. Mater., 13(6), 624-630 (2014).  https://doi.org/10.1038/nmat3944
  14. Coleman, J. N., "Liquid exfoliation of defect-free graphene," Acc. Chem. Res., 46(1), 14-22 (2013).  https://doi.org/10.1021/ar300009f
  15. Coleman, J. N., "Liquid phase exfoliation of nanotubes and graphene," Adv. Funct. Mater., 19(23), 3680-3695 (2009).  https://doi.org/10.1002/adfm.200901640
  16. Phiri, J., Gane, P., and Maloney, T. C. "High-concentration shear-exfoliated colloidal dispersion of surfactant-polymer-stabilized few-layer graphene sheets," J. Mater. Sci., 52(13), 8321-8337 (2017).  https://doi.org/10.1007/s10853-017-1049-y
  17. Jun, H. Y., Kwak, Y., Wu, K., Ahn, H.-J., Hwang, W. R., Ryu, G. H., Ryu, S. O., Kim, K.-W., Kim, G., Ni, A., Brigljevic, B., Lim, H., Kim, S. H., and Choi, C.-H., "Integrated graphene study with advanced liquid-phase exfoliation, general ink formulation for diverse printing processes, and high-performing printed energy storage device revealing rheological impact on printed graphene device", submitted. 
  18. Backes, C., Paton, K. R., Hanlon, D., Yuan, S., Katsnelson, M. I., Houston, J., and Coleman, J. N., "Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets," Nanoscale, 8(7), 4311-4323 (2016).  https://doi.org/10.1039/c5nr08047a
  19. Hu, G., Yang, L., Yang, Z., Wang, Y., Jin, X., Dai, J., and Hasan, T., "A general ink formulation of 2D crystals for wafer-scale inkjet printing," Sci. Adv., eaba5029 (2020). 
  20. Jun, H. Y., Kim, S. J., and Choi, C. H., "Ink formulation and printing parameters for inkjet printing of two dimensional materials: a mini review," Nanomaterials, 11(12), 3441 (2021). 
  21. Jun, H. Y., Ryu, S. O., Kim, S. H., Kim, J. Y., Chang, C. H., Ryu, S. O., and Choi, C. H. "Inkjet Printing of Few Layer Enriched Black Phosphorus Nanosheets for Electronic Devices," Adv. Electron. Mater., 7(10), 2100577 (2021). 
  22. Choi, C. H., Ko, D. H., Park, B., Choi, Y., Choi, W., and Kim, D. P., "Air-water interfacial fluidic sonolysis in superhydrophobic silicon-nanowire-embedded system for fast water treatment," Chem. Eng. J., 358, 1594-1600 (2019).  https://doi.org/10.1016/j.cej.2018.10.126
  23. Choi, C. H., Ko, D. H., Jun, H. Y., Ryu, S. O., and Kim, D. P., "Rapid exfoliation for few-layer enriched black phosphorus dispersion via a superhydrophobic silicon-nanowire-embedded microfluidic process," Green Chem., 22(3), 699-706 (2020).  https://doi.org/10.1039/c9gc02337b
  24. Jang, D., Kim, D., & Moon, J., "Influence of fluid physical properties on ink-jet printability," Langmuir, 25(5), 2629-2635 (2009).  https://doi.org/10.1021/la900059m
  25. Choi, C. H., Allan-Cole, E., and Chang, C. H., "Visible to infrared plasmonic absorption from silver nanostructures enabled by microreactor-assisted solution deposition," CrystEngComm, 19(9), 1265-1272 (2017).  https://doi.org/10.1039/C6CE02180H
  26. Li, J., Naiini, M. M., Vaziri, S., Lemme, M. C., and Ostling, M., "Inkjet printing of MoS2," Adv. Funct. Mater., 24(41), 6524-6531 (2014).  https://doi.org/10.1002/adfm.201400984
  27. Khan, U., O'Neill, A., Lotya, M., De, S., and Coleman, J. N., "High concentration solvent exfoliation of graphene," Small, 6(7), 864-871 (2010).  https://doi.org/10.1002/smll.200902066
  28. Liu, W., Tanna, V. A., Yavitt, B. M., Dimitrakopoulos, C., and Winter, H. H., "Fast production of high-quality graphene via sequential liquid exfoliation," ACS Appl. Mater. Interfaces, 7(49), 27027-27030 (2015).  https://doi.org/10.1021/acsami.5b08494
  29. Lotya, M., King, P. J., Khan, U., De, S., and Coleman, J. N., "High-concentration, surfactant-stabilized graphene dispersions," ACS nano, 4(6), 3155-3162 (2010).  https://doi.org/10.1021/nn1005304
  30. O'Neill, A., Khan, U., Nirmalraj, P. N., Boland, J., and Coleman, J. N., "Graphene dispersion and exfoliation in low boiling point solvents," J. Phys. Chem. C, 115(13), 5422-5428 (2011).  https://doi.org/10.1021/jp110942e
  31. Htwe, Y. Z. N., and Mariatti, M., "Surfactant-assisted water-based graphene conductive inks for flexible electronic application," J. Taiwan Inst. Chem. Eng., 125, 402-412 (2021).  https://doi.org/10.1016/j.jtice.2021.06.022
  32. Htwe, Y. Z. N., Abdullah, M. K., and Mariatti, M., "Optimization of graphene conductive ink using solvent exchange techniques for flexible electronics applications," Synth. Met., 274, 116719 (2021). 
  33. Parvez, K., Worsley, R., Alieva, A., Felten, A., and Casiraghi, C., "Water-based and inkjet printable inks made by electrochemically exfoliated graphene," Carbon, 149, 213-221 (2019).  https://doi.org/10.1016/j.carbon.2019.04.047
  34. Li, J., Sollami Delekta, S., Zhang, P., Yang, S., Lohe, M. R., Zhuang, X., and Ostling, M., "Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing," ACS nano, 11(8), 8249-8256 (2017).  https://doi.org/10.1021/acsnano.7b03354
  35. Pei, L., and Li, Y. F., "Rapid and efficient intense pulsed light reduction of graphene oxide inks for flexible printed electronics," RSC Adv., 7(81), 51711-51720 (2017).  https://doi.org/10.1039/C7RA10416B
  36. Basak, I., Nowicki, G., Ruttens, B., Desta, D., Prooth, J., Jose, M., and Deferme, W., "Inkjet printing of PEDOT: PSS based conductive patterns for 3D forming applications," Polymers, 12(12), 2915 (2020). 
  37. Chae, H., Jung, M., Cheong, H., Soum, V., Jo, S., Kim, H., and Shin, K., "Thermoelectric temperature sensors by printing with a simple office inkjet printer," TechConnect Briefs, 4, 151-155 (2016). 
  38. Song, J. W., Kim, J., Yoon, Y. H., Choi, B. S., Kim, J. H., and Han, C. S., "Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern," Nanotechnology, 19(9), 095702 (2008). 
  39. Da Costa, T. H., Song, E., Tortorich, R. P., and Choi, J. W., "A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes," ECS J. Solid State Sci. Technol., 4(10), S3044 (2015).