Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.2.132

Thermal Property of 2D-Disordered Tungsten Chalcogenides  

Kim, Jong-Young (Korea Institute of Ceramic Engineering and Technology)
Jang, Kyoung-Ju (Korea Institute of Ceramic Engineering and Technology)
Pee, Jae-Hwan (Korea Institute of Ceramic Engineering and Technology)
Cho, Kwang-Yeon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering & Technology)
Choi, Soon-Mok (Green Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Seo, Won-Sun (Green Ceramics Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Kyung-Ja (Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
Thermal properties of layered metal chalcogenides such as $WT_2$ (T=S,Se) with two-dimensionally disordered structure were evaluated. Thermal conductivity shows a marked decrease after exfoliation and subsequent restacking because of random stacking of two-dimensional crystalline sheet, which circumvents thermal conduction pathways along longitudinal direction in anisotropic materials.
Keywords
Metal chalcogenide; Thermoelectric; Thermal conductivity; Exfoliation;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 B.C. Sales, D. Mandrus, and R.K. Williams, “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,” Science, 272 1325-28 (1996).   DOI   ScienceOn
2 T.M. Tritt, “Thermoelectric Materials: Holey and Unholey Semiconductors,” Science, 283 804-05 (1999).   DOI
3 F.J. DiSalvo, “Thermoelectric Cooling and Power Generation,” Science, 285 703-06 (1999).
4 B.C. Sales, D. Mandrus, and R.K. Williams, “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,” Science, 272 1325-28 (1996).   DOI   ScienceOn
5 T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297 2229-32 (2002).   DOI
6 L.D. Hicks and M.S. Dresselhaus, “The Effect of Quantum Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47 12727-31 (1993)   DOI   ScienceOn
7 L.D. Hick and M.S. Dresselhaus, “Thermoelectric Figure of merit of Onedimensional Conductor,” Phys. Rev. B, 47 16631-34 (1993)   DOI
8 J. P. Heremans, C.M. Thrush, D. T. Morelli, and M. Wu, “Thermoelectric Power of Bismuth nanocomposites,” Phys. Rev. Lett., 88 216801-04 (2002).   DOI   ScienceOn
9 K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T.Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, “Cubic $AgPb_mSbTe_{2+m}$ : Bulk Thermoelectric Materials with High Figure of Merit,” Science, 303 818-21 (2004).   DOI
10 G.J. Snyder and E.S. Toberer, “Complex Thermoelectric Materials,” Nature Mater., 7 105-14 (2008).   DOI
11 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, 320 634-38 (2008).   DOI   ScienceOn
12 T.C. Harman, P.J. Taylor, M.P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297 2229-32 (2002).   DOI
13 A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced Thermoelectric Performace of Rough silicon Wires,” Nature, 451 163-68 (2008).   DOI
14 C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “Ultralow Thermal Conductivity in Disordered, Layered $WSe_2$ Crystals,” Science, 315 351-53 (2007).   DOI
15 D.M.R. Divigalpitiya, R.F. Frindt, and S.R. Morrison, “Inclusion Systems of Organic Molecules in Restacked Single-layer Molybdenum Disulfide,” Science, 246 369-71 (1989).   DOI   ScienceOn
16 H. Tsai, J. Heising, J.L. Schindler, C.R. Kannewurf, and M.G. Kanatzidis, “Exfoliated-restacked Phase of $WS_2$,” J. Amer. Chem. Soc., 9 879-82 (1997)
17 K. E. Dungey, M. D. Curtis, and J. E. Penner-Hahn, “Structural Characterization of Thermal Stability of $MoS_2$ Intercalation Compounds,” Chem. Mater., 10 2152-61 (1998)   DOI
18 J. Heising and M. G. Kanatzidis, “Exfoliated and Restacked $MoS_2$ and WS_2$: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations,” J. Amer. Chem. Soc., 121 11720-32 (1999).   DOI
19 S.J. Poon, “Electronic and Thermoelectric Properties of Half-heusler Alloys,” Semicond. Semimet., 70 37-75 (2001).   DOI
20 G.S. Nolas, J.L. Cohen, G.A. Slack, and S.B. Schujman, “Semiconducting Ge Clathrates: Promising Candidate for Thermoelectric Applications,” Appl. Phys. Lett., 73 178-80 (1998).   DOI
21 R. Venkatasubramanian, E. Sivola, T. Colpitts, and O'Quinn, “Thin Film Thermoelectric Devices with High Room Temperature Figures of Merit,” Nature, 413 597-602 (2001).   DOI
22 W.J. Schutte, J.L. De Boer, and F. Jellinek, “Crystal Structure of Tungsten Disulfide and Diselenide,” J. Solid State Chem., 70 207-09 (1987).   DOI
23 J.A. Wilson and A.D. Yoffe, “The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties,” Adv. Phys., 18 193-335 (1969).   DOI
24 L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, “Experimental Study of the Effect of Quantum Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 53 R10493-96 (1996).   DOI
25 J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D'Angelo, A. Downey, T. Hogan, and M. G. Kanatzidis, “Nanostructuring and High Thermoelectric Efficiency in p-Type $Ag(Pb_{1-y}Sn_y)_mSbTe_{2+m}$,” Adv. Mater., 18 1170-73 (2006).   DOI
26 P.F.P. Poudeu, J. D'Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, “High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type $Na_{1-x}Pb_mSb_yTe_{m+2}$,” Angew. Chem. Int. Ed., 45 3835-39 (2006).   DOI
27 E. Benevente, M.A. Santa Ana, F. Mendizabal, and G. Gonzalez, “Intercalation Chemistry of Molybdenum Disulfide,” Coordination Chem. Rev., 224 87-109 (2002).   DOI
28 L.S. Volovik, V.V. Fesenko, A.S. Bolgar, S.V. Drozdova, L.A. Klochkov, and V.F. Primachenko, “Enthalpy and heat Capacity of Molybdenum Disulfide”, Powder Metall. Met. Ceram., 17 697 (1978)   DOI
29 A.V.Blinder, A.S.Bolgar, and Zh.A. Trofimova, “Thermodynamic Properties of Selenides of Transition Metals,” Powder Metall. Met. Ceram., 32 234-37 (1993).   DOI