• Title/Summary/Keyword: excitation torque

Search Result 151, Processing Time 0.03 seconds

Grid-Connected Variable Speed Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통연계형 가변속 풍력발전시스템)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.397-404
    • /
    • 2004
  • This paper proposes a variable speed control scheme of grid-connected wind power generation systems using cage-type induction generators. The induction generator is operated in indirect vector control mode, where the d-axis current controls the excitation level and the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed In order to produce the maximum output power. The generated power flows into the utility grid through the back-to-back PWM converter. The line-side converter controls the dc link voltage by the q-axis current control and can control the line-side power factor by the d-axis current control. Experimental results are shown to verify the validity of the proposed scheme.

Design of Jerk Bounded Feed Rate with Look Ahead using Adaptive NURBS Interpolator (NURBS 적응보간기를 이용한 Jerk 제한 이송속도 생성)

  • Kweon S.H.;Mohan S.;Yang S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.457-458
    • /
    • 2006
  • A method for obtaining smooth, jerk bounded feed rate profile in high speed machining has been developed. This study proposes a NURBS interpolator based on adaptive feed rate control with a well developed look ahead algorithm which takes into account the machining dynamics as well. Limitation of jerk and proportional torque rate result in smoothened loads on the machine which effectively reduces excitation of the resonant frequencies of the machine. It is found that the values of the feed rate of the down stream sharp corner have profound effect on the feed rate of the upstream sharp corners. By using a windowing scheme the feed rate profile obtained after look ahead method is re-interpolated to reduce the jerk related problems. This is compared with the adaptive NURBS interpolator to show the effectiveness of the proposed method. Simulation results indicate that the consideration of 'ripple effect' is important in avoiding jerk and thereby increasing the machining accuracy.

  • PDF

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.

Speed Control of DC Motor for Roller Type Seeder (롤러형 파종기 구동용 직류모터의 회전속도 제어)

  • 이중용;김유용;박상래
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.351-358
    • /
    • 2000
  • This study was conducted to develop a speed control system of a DC motor which drove a barley seeder mounted on a combine harvester. Barley seeder mounted on a combine has been known to reduce labor and cost of barley cultivation. However, development of the seeder has been unsuccessful because the combine, a dedicated rice and barley harvester has not enough space and proper power take-off for barley seeder. To develop a barley seeder, small powered motor speed controller was required. A proximity sensor for detecting working speed of the combine and a programmable one board microprocessor was used to develope a control system. Motor parameters and motor constant, relationship between seeding rate, motor speed, groove volumes of a tested roller, torque were measured. The proximity sensor sent a frequency signal to the microprocessor. In laboratory experiments, the excitation voltage of the motor was shown not to be proportional to the size of pulse width (duty ratio). A table transforming frequency signal, that represented for working speed to proper pulse width was developed from seeding rate experiments. However, seeding rate at low frequency signal was not proportional to the working speed. Seeding rate control proportional to the frequency signal was achieved by shifting of the frequency signal.

  • PDF

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Magnetic Field Analysis for Development of Magnetic Torquer

  • Yim, Jo-Ryeong;Lee, Seon-ho;Rhee, Seung-Wu
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.63-63
    • /
    • 2003
  • There are many actuators and sensors used for attitude control system for KOMPSAT such as Reaction Wheel Assembly, Magnetic Torque Assembly, Dual Thruster Module, Solar array Drive, Three Axis Magnetometer, Conical Earth Sensor, Fine Sun Sensor Assembly, Coarse Sun Sensor Assembly, Gyro Reference Assembly and so on. For KOMPSA T satellite it has been considered using the Magnetic Torquer (MTQ) generating the magnetic dipole moment. In general, the magnetic dipole moment for satellite attitude control system is used for dumping out the excessive reaction wheel momentum so that the reaction wheel speed is not saturated. The objective of this study is to analyze the magnetic field characteristics generated by the Magnetic Torquer using the Maxwell 2D Field Simulator software. Currently, the developing model (DM) of the MTQ is being developed and manufactured at a company under the supervision of KARL MTQ is an electromagnet consisting of a ferromagnetic cylindrical core on which an excitation coil is wound. A current is passed through the coil to produce a dipole momentum in the ferromagnetic core. The configuration of the MTQ will be introduced in the presentation. The 2 dimensional model of the MTQ is drawn as axisymmetric models in RZ plane, and each corresponding material is assigned to the each MTQ object, the core, coil, and background. After the boundary conditions, current sources, and solution parameters are set up, the magnetic field intensities, directions, and other values specified by users can be calculated by using the finite element analysis. The theoretical magnetic field quantities obtained by the Maxwell 2D Simulator can be used for the basis of the development of the MTQ.

  • PDF

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.

Vibration characteristics of power differential gear train for 2.5MW wind turbine (2.5MW 풍력발전기 동력분기식 기어트레인의 진동특성)

  • Kim, Jung Su;Park, No Gill;Lee, Hyoung Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.253-261
    • /
    • 2014
  • In this paper, vibration analysis of power differential gear train for 2.5MW wind turbine system is analyzed. which system is composed of two planetary gear set, one helical gear set and main shaft that connected by flange. Planetary gear set, helical gear set, main shaft are modeled in MASTA program and housing, torque arm, carrier, flange components are modeling by finite element method. Each models are combined by component mode superposition. To analysis of natural vibration characteristic about 2.5MW wind turbine gear train was performed and check about critical speed with wind load, mass unbalance, angle misalignment excitation frequency.

Dynamic Characteristics of Helicopter Bearingless Main Rotor (헬리콥터 무베어링 주로터의 동특성 시험)

  • Yun, Chul Yong;Song, Keun Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • The characteristics of bearingless main rotor of helicopter are investigated through non-rotating tests and rotating tests. The stiffness and natural frequencies of rotor blades, flexbeam, and torque tube which are core components of baearingless rotor are measured to obtain input material properties for rotor analysis. The functional test on ground for assembly of one hub with damper, snubber, and no blade is carried out to check interfaces between components, kinematics of components, and pitch motion ranges under applied loads including centrifugal load. The 4-bladed bearingless rotor with 5.82m of rotor radius is tested on the whirl tower with rotation plane of 9.65m height. The thrust and power are measured to obtain hover performance and the frequencies and dampings of the rotor are obtained by excitation of cyclic pitch by hydraulic actuators.