Browse > Article
http://dx.doi.org/10.12989/anr.2020.8.1.025

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings  

Hosseini, Seyyed A.H. (Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University)
Khosravi, Farshad (Department of Aerospace Engineering, K.N. Toosi University of Technology)
Publication Information
Advances in nano research / v.8, no.1, 2020 , pp. 25-36 More about this Journal
Abstract
Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.
Keywords
forced vibration; SWCNT; torsional vibration; linear and harmonic; exact solution;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Assadi, A. (2013), "Size dependent forced vibration of nanoplates with consideration of surface effects", Appl. Mathe. Model., 37(5), 3575-3588. https://doi.org/10.1016/j.apm.2012.07.049   DOI
2 Aydogdu, M. (2009a), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E: Low-dimens. Syst. Nanostruct., 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007   DOI
3 Aydogdu, M. (2009b), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014   DOI
4 Aydogdu, M. and Elishakoff, I. (2014), "On the vibration of nanorods restrained by a linear spring in-span", Mech. Res. Commun., 57, 90-96. https://doi.org/10.1016/j.mechrescom.2014.03.003   DOI
5 Aydogdu, M. and Filiz, S. (2011), "Modeling carbon nanotubebased mass sensors using axial vibration and nonlocal elasticity", Physica E: Low-dimens. Syst. Nanostruct., 43(6), 1229-1234. https://doi.org/10.1016/j.physe.2011.02.006   DOI
6 Baruah, S. and Dutta, J. (2009), "Nanotechnology applications in pollution sensing and degradation in agriculture: a review", Environ. Chem. Lett., 7(3), 191-204. https://doi.org/10.1007/s10311-009-0228-8   DOI
7 Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0   DOI
8 Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147. https://doi.org/10.1038/384147a0   DOI
9 Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E: Low-dimens. Syst. Nanostruct., 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023   DOI
10 Murmu, T. and Pradhan, S. (2009a), "Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model", Physica E: Low-dimens. Syst. Nanostruct., 41(8), 1628-1633. https://doi.org/10.1016/j.physe.2009.05.013   DOI
11 Murmu, T. and Pradhan, S. (2009b), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E: Low-dimens. Syst. Nanostruct., 41(8), 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015   DOI
12 Nazemnezhad, R. and Fahimi, P. (2017), "Free torsional vibration of cracked nanobeams incorporating surface energy effects", Appl. Mathe. Mech., 38(2), 217-230. https://doi.org/10.1007/s10483-017-2167-9   DOI
13 Pradhan, S. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004   DOI
14 Rahmani, O., Hosseini, S.A.H. and Parhizkari, M. (2016), "Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: an analytical approach", Microsyst. Technol., 23, 2739-2751. https://doi.org/10.1007/s00542-016-3127-5
15 Rao, S.S. (2019), Vibration of Continuous Systems, Wiley
16 Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004   DOI
17 Roco, M.C. (2003), "Nanotechnology: convergence with modern biology and medicine", Current Opinion Biotechnol., 14(3), 337-346. https://doi.org/10.1016/S0958-1669(03)00068-5   DOI
18 Duncan, T.V. (2011), "Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors", J. Colloid Interf. Sci., 363(1), 1-24. https://doi.org/10.1016/j.jcis.2011.07.017   DOI
19 Ditta, A. (2012), "How helpful is nanotechnology in agriculture?", Adv. Natural Sci.: Nanosci. Nanotechnol., 3(3), 033002. https://doi.org/10.1088/2043-6262/3/3/033002   DOI
20 Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L. and Goldberg, H.A. (2013), Graphite Fibers and Filaments, Springer Science & Business Media
21 Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y. and Joo, S.W. (2014), "Carbon nanotubes: properties, synthesis, purification, and medical applications", Nanoscale Res. Lett., 9(1), 393. https://doi.org/10.1186/1556-276X-9-393   DOI
22 Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092   DOI
23 El-Borgi, S., Rajendran, P., Friswell, M., Trabelssi, M. and Reddy, J. (2018), "Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory", Compos. Struct., 186, 274-292. https://doi.org/10.1016/j.compstruct.2017.12.002   DOI
24 Eltaher, M., Alshorbagy, A.E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appli. Mathe. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016   DOI
25 Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064   DOI
26 Salvetat, J.-P., Bonard, J.-M., Thomson, N., Kulik, A., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Physics A, 69(3), 255-260. https://doi.org/10.1007/s003390050999   DOI
27 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
28 Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0   DOI
29 Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete- a review", Constr. Build. Mater., 24(11), 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014   DOI
30 Scott, N. and Chen, H. (2013), "Nanoscale science and engineering for agriculture and food systems", Indust. Biotechnol., 9(1), 17-18. https://doi.org/10.1089/ind.2013.1555   DOI
31 Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Computat. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017   DOI
32 Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B: Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082   DOI
33 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013a), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001   DOI
34 Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013b), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009   DOI
35 Wang, G.-F. and Feng, X.-Q. (2009), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Phys. D: Appl. Phys., 42(15), 155411. https://doi.org/10.1088/0022-3727/42/15/155411   DOI
36 Gates, T., Odegard, G., Frankland, S. and Clancy, T. (2005), "Computational materials: multi-scale modeling and simulation of nanostructured materials", Compos. Sci. Technol., 65(15-16), 2416-2434. https://doi.org/10.1016/j.compscitech.2005.06.009   DOI
37 Farajpour, M.R., Rastgoo, A., Farajpour, A. and Mohammadi, M. (2016), "Vibration of piezoelectric nanofilm-based electromechanical sensors via higher-order non-local strain gradient theory", Micro Nano Lett., 11(6), 302-307. https://doi.org/10.1049/mnl.2016.0081   DOI
38 Fatahi-Vajari, A. and Imam, A. (2016), "Torsional vibration of single-walled carbon nanotubes using doublet mechanics", Zeitschrift fur angewandte Mathematik und Physik, 67(4), 81. https://doi.org/10.1007/s00033-016-0675-6   DOI
39 Feynman, R.P. (1959). "Plenty of Room at the Bottom", APS Annual Meeting.
40 Gheshlaghi, B. and Hasheminejad, S.M. (2010), "Size dependent torsional vibration of nanotubes", Physica E: Low-dimens. Syst. Nanostruct., 43(1), 45-48. https://doi.org/10.1016/j.physe.2010.06.015   DOI
41 Wilkinson, J. (2003), "Nanotechnology applications in medicine", Medical Device Technol., 14(5), 29-31.
42 Wang, G.-F. and Feng, X.-Q. (2010), "Effect of surface stresses on the vibration and buckling of piezoelectric nanowires", EPL (Europhysics Letters), 91(5), 56007. https://doi.org/10.1209/0295-5075/91/56007   DOI
43 Wang, Y., Li, Z., Wang, J., Li, J. and Lin, Y. (2011), "Graphene and graphene oxide: biofunctionalization and applications in biotechnology", Trends Biotechnol., 29(5), 205-212. https://doi.org/10.1016/j.tibtech.2011.01.008   DOI
44 West, J.L. and Halas, N.J. (2000), "Applications of nanotechnology to biotechnology: Commentary", Current Opinion Biotechnol., 11(2), 215-217. https://doi.org/10.1016/S0958-1669(00)00082-3   DOI
45 Zakeri, M. and Shayanmehr, M. (2013), "On the mechanical properties of chiral carbon nanotubes", J. Ultrafine Grained Nanostruct. Mater., 46(1), 1-9. https://doi.org/10.7508/JUFGNSM.2013.01.001
46 Zarepour, M., Hosseini, S.A. and Kokaba, M.R. (2016), "Electrothermo-mechanical nonlinear free vibration of nanobeam resting on the winkler-pasternak foundations based on nonlocal elasticity using differential transform method", Microsyst. Technol., 23, 2641-2648. https://doi.org/10.1007/s00542-016-2935-y
47 Zhang, L., Lei, Z. and Liew, K. (2015), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method", Compos. Struct., 120, 189-199. https://doi.org/10.1016/j.compstruct.2014.10.009   DOI
48 Hao, M., Guo, X. and Wang, Q. (2010), "Small-scale effect on torsional buckling of multi-walled carbon nanotubes", Eur. J. Mech.-A/Solids, 29(1), 49-55. https://doi.org/10.1016/j.euromechsol.2009.05.008   DOI
49 Gooding, J.J. (2005), "Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochimica Acta, 50(15), 3049-3060. https://doi.org/10.1016/j.electacta.2004.08.052   DOI
50 Gopalakrishnan, K., Birgisson, B., Taylor, P. and Attoh-Okine, N.O. (2011), Nanotechnology in Civil Infrastructure: A Paradigm Shift, Springer.
51 Hayati, H., Hosseini, S.A. and Rahmani, O. (2016), "Coupled twist-bending static and dynamic behavior of a curved singlewalled carbon nanotube based on nonlocal theory", Microsyst. Technol., 23, 2393-2401. https://doi.org/10.1007/s00542-016-2933-0
52 Hosseini, S.A.H. and Rahmani, O. (2016d), "Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity", J. Thermal Stress., 39(10), 1252-1267. https://doi.org/10.1080/01495739.2016.1215731   DOI
53 Hosseini, S. and Rahmani, O. (2016a), "Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model", Int. J. Struct. Stabil. Dyn., 16(10), 1550077. https://doi.org/10.1142/S0219455415500777   DOI
54 Hosseini, S.A.H. and Rahmani, O. (2016b), "Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory", Meccanica, 52(6), 1441-1457. https://doi.org/10.1007/s11012-016-0491-2   DOI
55 Hosseini, S.A.H. and Rahmani, O. (2016c), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 169. https://doi.org/10.1007/s00339-016-9696-4   DOI
56 Alizade Hamidi, B., Hosseini, S.A.H., Hassannejad, R. and Khosravi, F. (2019), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Thermal Stresses, 43(2), 154-174. https://doi.org/10.1080/01495739.2019.1666694
57 Adams, F.C. and Barbante, C. (2013), "Nanoscience, nanotechnology and spectrometry", Spectrochimica Acta Part B: Atomic Spectroscopy, 86, 3-13. https://doi.org/10.1016/j.sab.2013.04.008   DOI
58 Adeli, M.M., Hadi, A., Hosseini, M. and Gorgani, H.H. (2017), "Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory", Eur. Phys. J. Plus, 132(9), 393. https://doi.org/10.1140/epjp/i2017-11688-0   DOI
59 Ahouel, M., Houari, M.S.A., Bedia, E. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963   DOI
60 Angeli, E., Buzio, R., Firpo, G., Magrassi, R., Mussi, V., Repetto, L. and Valbusa, U. (2008), "Nanotechnology applications in medicine", Tumori J., 94(2), 206-215.   DOI
61 Apuzzo, A., Barretta, R., Canadija, M., Feo, L., Luciano, R. and de Sciarra, F.M. (2017), "A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation", Compos. Part B: Eng., 108, 315-324. https://doi.org/10.1016/j.compositesb.2016.09.012   DOI
62 Kazemnia Kakhki, E., Hosseini, S.M. and Tahani, M. (2016), "An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory", Appl. Mathe. Model., 40(4), 3164-3174. https://doi.org/10.1016/j.apm.2015.10.019   DOI
63 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0   DOI
64 Jiang, K., Li, Q. and Fan, S. (2002), "Nanotechnology: Spinning continuous carbon nanotube yarns", Nature, 419(6909), 801. https://doi.org/10.1038/419801a   DOI
65 Katz, E. and Willner, I. (2004), "Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics", Chem. Phys. Chem., 5(8), 1084-1104. https://doi.org/10.1002/cphc.200400193   DOI
66 Ke, L.-L., Wang, Y.-S. and Wang, Z.-D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Composi. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023   DOI
67 Lee, S.C. (1998), "Biotechnology for nanotechnology", Trends Biotechnol., 16(6), 239-240. https://doi.org/10.1016/S0167-7799(98)01187-1   DOI
68 Kiani, K. (2014), "Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field accounting for both surface energy and size effects", Physica E: Low-dimens. Syst. Nanostruct., 63, 27-35. https://doi.org/10.1016/j.physe.2014.04.009   DOI
69 Krishnan, A., Dujardin, E., Ebbesen, T., Yianilos, P. and Treacy, M. (1998), "Young's modulus of single-walled nanotubes", Physical review B, 58, 14013. https://doi.org/10.1103/PhysRevB.58.14013   DOI
70 Arda, M. and Aydogdu, M. (2014), "Torsional statics and dynamics of nanotubes embedded in an elastic medium", Compos. Struct., 114, 80-91. https://doi.org/10.1016/j.compstruct.2014.03.053   DOI
71 Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Meyyappan, M. (2003), "Carbon nanotube sensors for gas and organic vapor detection", Nano Lett., 3(7), 929-933. https://doi.org/10.1021/nl034220x   DOI
72 Lieber, C.M. (2003), "Nanoscale science and technology: building a big future from small things", MRS bulletin. 28(7), 486-491. https://doi.org/10.1557/mrs2003.144   DOI
73 Lim, C., Islam, M. and Zhang, G. (2015), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Mech. Sci., 94, 232-243. https://doi.org/10.1016/j.ijmecsci.2015.03.002   DOI
74 Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mechanica Sinica, 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3   DOI
75 Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B: Condensed Matter, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030   DOI
76 Mukhopadhyay, S.S. (2014), "Nanotechnology in agriculture: prospects and constraints", Nanotechnol. Sci. Appl., 7, 63.   DOI