• Title/Summary/Keyword: exact

Search Result 8,081, Processing Time 0.03 seconds

E-DEPTHS AND T-CODEPTHS OF MODULES

  • Chung, Sang-Cho;Park, Jun-Seok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.363-374
    • /
    • 1998
  • We investigate relationships of E-depths and T-codepths of modules in s short exact exact sequence. We give E-depths and T-codepths of some modules.

  • PDF

EXACT FORMULA FOR JACOBI-EISENSTEIN SERIES OF SQUARE FREE DISCRIMINANT LATTICE INDEX

  • Xiong, Ran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.481-488
    • /
    • 2020
  • In this paper we give an exact formula for the Fourier coefficients of the Jacobi-Eisenstein series of square free discriminant lattice index. For a special case the discriminant of lattice is prime we show that the Jacobi-Eisenstein series corresponds to a well known Eisenstein series of modular forms.

DECOMPOSITION APPROXIMATION FOR OPEN QUEUEING NETWORKS

  • Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.1035-1045
    • /
    • 2001
  • We present two decomposition approximations for the mean sojourn times in open single class queing networks. If there is a single bottleneck station, the approximations are asymptotically exact in both light and heavy traffic. When applied to a Jackson network or an M/G/1 queue, these approximations are exact for all values of the traffic intensity.

An Exact Algorithm for the Aircraft Scheduling Problem (비행기 일정계획 문제를 위한 최적해법)

  • 기재석
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.25
    • /
    • pp.91-95
    • /
    • 1992
  • The aircraft schedule is the central of an airline's planning process, aimed at optimizing the deployment of airline's resources in order to maximize profits In this paper, the aircraft schedule is formulated as an integer programming model and the exact algorithm hared on enumeration method is proposed.

  • PDF

TATE-SHAFAREVICH GROUPS OVER THE COMMUTATIVE DIAGRAM OF 8 ABELIAN VARIETIES

  • Hoseog Yu
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.410-417
    • /
    • 2023
  • Suppose that there are 8 abelian varieties defined over a number field K which satisfy a commutative diagram. We show that if we know that three out of four short exact sequences satisfy the rate formula of Tate-Shafarevich groups, then the unknown short exact sequence satisfies the rate formula of Tate-Shafarevich groups, too.

Analysis of Two-Dimensional Transient Heat Conduction Problems in a Finite Strip by the Heat Balance Integral Method (熱平衡積分法에 의한 有限 Strip에서의 2次元 過渡熱傳導 問題의 解析)

  • 서정일;조진호;조종철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.417-424
    • /
    • 1983
  • This paper presents two methods of obtaining approximate analytic solutions for the temperature distributions and heat flow to two-dimensional transient heat conduction problems in a finite strip with constant thermal properties using the Heat Balance Integral. The methods introduced in this study are as follows; one using the Heat Balance Integral only, and the other successively using the Heat Balance Integral and an exact analytic method. Both methods are applicable to a large number of the two-dimensional unsteady conduction problems in finite regions such as extended surfaces with uniform thickness, but in this paper only solutions for the unsteady problems in a finite strip with boundary condition at the base expressed in terms of step function are provided as an illustration. Results obtained by both methods are compared with those by the exact two-dimensional transient analysis. It is found that both approximate methods generate small time solutions, which can not be obtained easily by any exact analytic method for small values of Fourier numbers. In the case of applying the successive use of the Heat Balance Integral and Laplace transforms, the analysis shows good agreement with the exact solutions for any Fourier number in the range of Biot numbers less than 0.5.