• Title/Summary/Keyword: evaluation of danger

Search Result 116, Processing Time 0.028 seconds

Static Analysis of String Stability and Group Territory in Computer Go (컴퓨터 바둑에서 String안정도와 Group 영역에 의한 정적분석)

  • 박현수;이두한;김항준
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.76-86
    • /
    • 2003
  • We define a string stability heuristically and divide the board into group territory in computer Go. Elements of string stability are eye(E), eye-like(EL), special-eye(SE), extension-point(EX), liberty(L) and connection-point(CP). A string stability have 5 levels that are complete alive, alive, unsettled, danger and killed level. A group is made strings and link-points and have the territory. Territory division of a group is acquired by strings stability and link-points which are marym-mo, hankan, nalil-ja, and twokan between string and string. We compare our method with the result of evaluation of professional player. As a result, the mean error is 8.7.

A Study on Using PSM Policy for the Serious Accident Prevention of Construction (건설업 중대재해 예방을 위한 PSM 제도 활용에 관한 연구)

  • 정범모;양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 2002
  • As domestic buildings have been large-scaled, diversified and high-rise, there have been a consistent demand for design, development of construction technology and accident prevention activity as well as quality enhancement. In spite of governmental and related institutions' efforts for reducing national losses which come from numerous accidents, there have been endless small and large accidents on the construction site and thus, it is urgent to conduct empirical researches in this area. Currently safety supervision system in construction industry has enforced harm and danger prevention planning system, however it merely stick to other existing materials. In addition, it is difficult to put it into practice in that it requires bearing too much burden to draw out the planning itself in a case of large construction work. Consequently in this paper we select evaluation criteria by construction progress, classify into several categories, and regard potential danger which often occurs, as a evaluation criterion. Further step is to allow workers or collaborated companies to express their expert opinions or experiences and to encourage quality and process control and autonomous safety control by applying PSM method. The reason why PSM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries,' thereby strengthening there competitive edges. Boost of safety control system by PSM method will make an enormous contribution to preventing construction accidents on the site by establishing and securing an autonomous safety control system.

A Study On Development of Safety Inspection Evaluation Method in the Construction Using PSM Method (PSM 제도를 활용한 건설업 안전점검 평가방법 개발에 관한 연구)

  • 양광모;전현정;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.24-30
    • /
    • 2003
  • As domestic buildings have been large-scaled, diversified and high-rise, there have been a consistent demand for design, development of construction technology and accident prevention activity as well as quality enhancement. In spite of governmental and related institutions' efforts for reducing national losses which come from numerous accidents, there have been endless small and large accidents on the construction site and thus, it is urgent to conduct empirical researches in this area. Currently safety supervision system in construction industry has enforced harm and danger prevention planning system, however it merely stick to other existing materials. In addition, it is difficult to put it into practice in that it requires bearing too much burden to draw out the planning itself in a case of large construction work. Consequently in this paper we select evaluation criteria by construction progress, classify into several categories, and regard potential danger which often occurs, as a evaluation criterion. Further step is to allow workers or collaborated companies to express their expert opinions or experiences and to encourage quality and process control and autonomous safety control by applying PSM(Process Safety Management) method using AHP(Analytic Hierarchy Process) and to development of PSM evaluation method in the construction. The reason why PSM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries, thereby strengthening their competitive edges. Boost of safety control system by PSM method could make an enormous contribution to preventing construction accidents on the site by establishing and securing an autonomous safety control system.

Evaluation of Navigational Safety Using the Integrated Seakeeping Performance Index under Loading Conditions of a Ship (선박의 적화 상태별 종합내항성능지표에 의한 항해 안전성 평가)

  • 김순갑;김정만;공길영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.43-52
    • /
    • 1998
  • Generally, the navigational safety of a ship under various loading conditions is evaluated by a loading manual. However, the loading manual handles only statical factors such as weight and buoyancy of ship without including any wave conditions. Practically ship's safety is much concerned with the occurrences on the rough sea as propeller racing, rolling, deck wetness, vertical acceleration, lateral acceleration, slamming and so on. The purpose of this paper is to present a synthetic and practical evaluation method of navigational safety using the integrated seakeeping performance index(ISPI) under loading conditions of ship in seaways. The method is calculated by means of the ISPI by measuring only vertical acceleration. Judgement of dangerousness is carried out for four lading conditions : homogeneous full loaded, half loaded, heavy ballast loaded, and normal ballast loaded conditions. In developing the practical evaluation system of navigational safety, it is useful to solve the difficulties in measuring factors by sensors. And by applying the evaluation diagrames, navigators are able to avoid dangerousness by keeping away of the danger encountering angle of wave direction which the diagram shows.

  • PDF

Development of Construction Process Safety Information Management System for Safety Accident Prevention (안전사고 예방을 위한 건설업 공정 안전 정보 관리 시스템 개발)

  • Jun Hyun Jong;Yang Kwang Mo;Kang Kyung Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.1
    • /
    • pp.11-23
    • /
    • 2005
  • It is difficult to put it into practice in that it requires bearing too much burden to draw out the planning itself in a case of large construction work. Consequently in this paper we select evaluation criteria by construction progress, classify into several categories, and regard potential danger which often occurs, as a evaluation criterion. Further step is to allow workers or collaborated companies to express their expert opinions or experiences and to encourage quality and process control and autonomous safety control by applying PSM(Process Safety Management) method using AHP(Analytic Hierarchy Process) and to development of PSIM(Process Safety Information Management) evaluation method in the construction. The reason why PSIM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries, thereby strengthening their competitive edges.

Impact Assessment of Beach Erosion from Construction of Artificial Coastal Structures Using Parabolic Bay Shape Equation

  • Lim, Changbin;Lee, Sahong;Park, Seung-Min;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.436-441
    • /
    • 2020
  • Wave field changes resulting from artificial coastal structures constructed in coastal zones have emerged as a major cause of beach erosion, among other factors. The rates of erosion along the eastern coast of Korea have varied mainly owing to the construction of various ports and coastal structures; however, impact assessments of these structures on beach erosion have not been appropriately conducted. Thus, in this study, a methodology to assess the impact of erosion owing to the construction of artificial structures has been proposed, for which a parabolic bay shape equation is used in determining the shoreline angle deformation caused by the structures. Assuming that the conditions of sediment or waves have similar values in most coastal areas, a primary variable impacting coastal sediment transport is the deformation of an equilibrium shoreline relative to the existing beach. Therefore, the angle rotation deforming the equilibrium of a shoreline can be the criterion for evaluating beach erosion incurred through the construction of artificial structures. The evaluation criteria are classified into three levels: safety, caution, and danger. If the angle rotation of the equilibrium shoreline is 0.1° or less, the beach distance was considered to be safe in the present study; however, if this angle is 0.35° or higher, the beach distance is considered to be in a state of danger. Furthermore, in this study, the distance affected by beach erosion is calculated in areas of the eastern coast where artificial structures, mainly including ports and power plants, were constructed; thereafter, an impact assessment of the beach erosion around these areas was conducted. Using a proposed methodology, Gungchon Port was evaluated with caution, whereas Donghae Port, Sokcho Port, and Samcheok LNG were evaluated as being in a state of danger.

Design of a Mobile Robot System for Integrity Evaluation of Large Sized Industrial Facilities (대형 산업설비 안전성 진단용 이동로봇 시스템 설계)

  • Lee Ho-Gil;Ryuh Young-Sun;Son Woong-Hee;Jeong Hee-Don;Park Sangdeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.595-601
    • /
    • 2005
  • A mobile robot system utilizing NDT (Non-Destructive Testing) method is designed and fabricated f3r automatic integrity evaluation of large sized industrial reservoirs and pipelines. The developed mobile robot can crawl over the outer surface of the industrial facilities even though the shape of the structures is various and unsymmetric. The robot detects defects such as pinholes, cracks and thickness reduction at the wall of the facilities using EMAT (Electro-Magnetic Acoustic Transducer). Image processing technology for weld line detection at the surface of the target and host programs including defect detecting algorithms are also developed. Automation of defect detection for these kinds of large facilities using mobile robots is helpful to prevent significant troubles of the structures without danger of human beings under harmful environment.

A Study on Calamity Index Evaluation Based on FRAT - Construction Safety - (FRAT을 이용한 재해평가지수 연구 - 건설업을 중심으로 -)

  • Park, Tae-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.31-38
    • /
    • 2007
  • The construction industry by its nature retains higher level of danger where the smallest of error may lead to a major catastrophe endangering many workers and public safety as well as provoke social criticism. With the aid of quantitative statistical data on safety-related calamity analyzed till this day, this paper handled in depth the analysis of diseases other than the accidents, and selected new variable indexes that influence the indirect sections of calamity that are mostly concealed and incorporated them in a new model. For the factor selection of new calamity evaluation model, FRAT(Frequency, Recency, Amount, Type of merchandise/service)technique of customer-related management in marketing was applied, and as for the significance of each factor in the weight selection of variables. Consequently, considering the graveness of the FRAT itself through safety management experts, the related researches must be expanded.

Vulnerability Evaluation for Monitoring Wide Area Outage in Transmission Systems (송전 계통 감시 시스템을 위한 취약도 평가 방법 개발)

  • Kim, Jin-Hwan;Lim, Il-Hyung;Lee, Seung-Jae;Choi, Myeon-Song;Lim, Seong-Il;Kim, Sang-Tae;Jin, Bo-Gun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.506-514
    • /
    • 2010
  • Defense systems are needed to prevent catastrophic failures of a power grid due to cascaded events. Cascaded events can be occurred by power flow overload. Especially, it is the most dangerous problem that overload line is outage, because it can make the power system face danger of cascaded. In this paper, vulnerability evaluation for monitoring wide are outage is proposed using by configuration information of transmission systems. This method of vulnerability evaluation is considered direct effect and indirect effect of power flow, especially overload. What is more, it can be used when the configuration of power system changes, as simple fault occurs or maintenance of facility. In the case studies, the estimation and simulation network have been testified and analysed in PSSE and C programming.

A Study on the Correlation between Shiphandler's Subjective Evaluation and Maneuvering Risk in Curved Narrow channel (굴곡된 수로 통항에서 조선자의 주관적 위험감지도와 조종위험도와의 상관관계에 관한 기초 연구)

  • 이동섭;윤점동;정태권
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.35-45
    • /
    • 1996
  • The assesment of the safety of ship's transit in a curved narrow channel consists of the maneuvering safety determined by the chance of running aground, the maneuvering difficulty determined by ship's workload, and shiphandler's subjective evaluation. In this study to examine the correlation between shiphandler's subjective evaluation and the maneuvering risk, the real-time and full-mission shiphandling simulator in the Korea Marine Training & Research Institutes(KMTRI) was utilized. On the conning bridge of the shiphandling simulator, 50 experienced masters conducted the modeled vessel of 60,000 deadweight tonnage along the designed channel under 3 different environmental conditions. The findings were as follows : (1) The frequencies of stress levels, work difficulties, vessel controllability and overall workload of shiphandlers are similar irrespective of environmental conditions and they are able to be represented as shiphandler's subjective evaluation. (2) It s possible to assess and analyze theoretically the correlation between the shiphandler's subjective evaluation and maneuvering risk under each environmental condition by quantifying the data obtained from the test. The results are as follows : ① As the degree of maneuvering risk increases, the shiphandler's subjective evaluation increases sharply near the curvature area of the designed channel. ② In the area of the curvature of the designed channel, maneuvering risk sincreases sharply with the danger of running aground under the environmental condition of current and wind coming from the stern.

  • PDF