• Title/Summary/Keyword: eutectic composite

Search Result 42, Processing Time 0.028 seconds

Research of reducing thermal stress generated in MGC turbine nozzles

  • Fujimoto, Syuu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.385-390
    • /
    • 2004
  • An unique ceramic material produced through unidirectional solidification with eutectic composition of two-phase oxides was introduced recently. This composite material has the microstructure of coupled networks of two single crystals interpenetrate each other without grain boundaries. Depending on this microstructure this material, called Melt Growth Composite (MGC), can sustain its room temperature strength up to 1$700^{\circ}C$ (near its melting point) and offer strong oxidization-resistant ability, making its characteristics quite ideal for the gas turbine application. The research project on MGC started in 2001 with the objective of establishing component technologies for MGC application to the high temperature components of the gas turbine engine. MGC turbine nozzles are expected to improve efficiency of gas turbine. However, reduction of the thermal stress is required since high thermal stress is easily generated in MGC turbine nozzles due to temperature distribution. Firstly, the hollow nozzle shape was optimized to reduce thermal stress using numerical analysis. From the results of the first hot gas flow tests, the thermal stress due to span-wise temperature distribution was required to be reduced, and separated nozzle to three pieces was designed. This was tested in hot gas flow at 140$0^{\circ}C$ level, and temperature distributions on the nozzle surface were obtained and stress field was evaluated.

  • PDF

Mechanically Workable High-strength Cu-Zr Composite (소성가공이 가능한 고강도 Cu-Zr 복합재료)

  • Shin, Sang-Soo;Lim, Kyung-Mook;Kim, Eok-Soo;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.293-299
    • /
    • 2012
  • Ultrafine-grained or nanostructured alloys usually lack the strain hardening capability needed to sustain uniform tensile deformation under high stresses. To circumvent this problem, we fabricated the Cu-based composite reinforced with the 3-dimensionally interconnected $Cu_5Zr$ phase using the combined technique of rapid quenching and subsequent hot-rolling. The alloy exhibited a tensile ductility of ~2.5% together with a strength of 1.57 GPa, which exceeds the values of most commercially available Cu-Be alloys. In this study, we elucidated the structural origin of the high strength and tensile ductility of the developed alloy by examining the thermal stability of the $Cu_5Zr$ reinforcing phase and the energy (work) absorption capability of the Cu matrix.

How to Improve the Ductility of Nanostructured Materials

  • Eckert J.;Duhamel C.;Das J.;Scudino S.;Zhang Z. F.;Kim, K. B.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.340-350
    • /
    • 2006
  • Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

Mechanical Properties of Al-Si Composite Powders produced by Gas Atomization Process

  • Kim Jin-Chun;Wang Li-Fe;Chung In-Sang;Kim Yong-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.46-47
    • /
    • 2004
  • The microstructure and mechanical properties of the hypereutectic prealloyed Al-Si powders prepared by the gas atomization process were described in this paper. With increasing the gas pressure of the atomization, the average powder size was decreased from about $145{\mu}m\;to\;80{\mu}m$. The primary eutectic Si particles were uniformly distributed in the Al matrix and their size varied in the range of $8-10{\mu}m$. The high densified specimens with above 96% of the theoretical density were fabricated the hot pressing process. The UTS mechanical properties of VN1 specimens were much higher than that of conventional hypoeutectic Al-Si alloys.

  • PDF

Microstructural Evolution of Cu-15 wt%Ag Composites Processed by Equal Channel Angular Pressing (등통로각압축공정을 이용하여 제조된 Cu-15 wt%Ag 복합재의 미세구조)

  • Lee, In Ho;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.931-937
    • /
    • 2012
  • The microstructure of Cu-15 wt%Ag composites fabricated by equal channel angular pressing (ECAP) with intermediate heat treatment at $320^{\circ}C$ was investigated by transmission electron microscopy (TEM) observations. Ag precipitates with a thickness of 20-40 nm were observed in the eutectic region of the Cu-15 wt%Ag composite solution treated at $700^{\circ}C$ before ECAP. The Cu matrix and Ag precipitates had a cube on cube orientation relationship. ECAPed composites exhibited ultrafine-grained microstructures with the shape and distribution dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the Cu and Ag grains were elongated along the shear direction and many micro-twins were observed in elongated Cu grains as well as in Ag filaments. The steps were observed on coherent twin boundaries in Cu grains. For route Bc in which the sample was rotated by 90 degrees after each pass, a subgrain structure with misorientation of 2-4 degree by fragmentation of the large Cu grains were observed. For route C in which the sample was rotated by 180 degrees after each pass, the microstructure was similar to that of the route A sample. However, the thickness of the elongated grains along the shear direction was wider than that of the route A sample and the twin density was lower than the route A sample. It was found that more microtwins were formed in ECAPed Cu-15 wt%Ag than in the drawn sample. Grain boundaries were observed in relatively thick and long Ag filaments in Cu-15 wt%Ag ECAPed by route C, indicating the multi-crystalline nature of Ag filaments.

Effect of Solidification Conditions and Heat Treatment on the Mechanical Properties of the $Al-CuAl_2$ Eutectic Composite (Al-$CuAl_2$ 공정복합재료의 기계적 성질에 미치는 응고조건과 열처리의 영향)

  • Lee, Hyun-Kyu;Lee, Ju-Hong;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.332-341
    • /
    • 1990
  • The structure and tensile properties of the unidirectionally solidified Al-33wt.%Cu alloy have been investigated. Casted Al-33wt.%Cu alloy was unidirectionally solidified with rates (R) between 1㎝/hr and 24cm/hr maintaining the thermal gradient(G) at solid-liquid interface, $32^{\circ}C/cm$ and $21^{\circ}C/cm$. The entectic struture was varied according to the growth condition(G/R radio). When G/R ratio was larger than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$ the lamellar structure was formed, and colony structure was formed when G/R ratio was smaller than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$. The interlamellar spacing(${\gamma}$) in the above alloy system was vaired with the growth rate(R) According to "${\gamma}^2{\cdot}R=8.8{\times}10^{-11}cm^2/sec$" relationship. The yield stress (${\sigma}$0.001) and UTS for samples in the as-grown condition increased with the interlamellar spacing decrease and the values corresponding to colony structure are lower than those corresponding to amellar structure with the same lamellar spacing. The yield stress for samples in aged condition did not change with the interlamellar spacing.

  • PDF

Temperature Calibration of a Specimen-heating Holder for Transmission Electron Microscopy

  • Kim, Tae-Hoon;Bae, Jee-Hwan;Lee, Jae-Wook;Shin, Keesam;Lee, Joon-Hwan;Kim, Mi-Yang;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • The in-situ heating transmission electron microscopy experiment allows us to observe the time- and temperature-dependent dynamic processes in nanoscale materials by examining the same specimen. The temperature, which is a major experimental parameter, must be measured accurately during in-situ heating experiments. Therefore, calibrating the thermocouple readout of the heating holder prior to the experiment is essential. The calibration can be performed using reference materials whose phase-transformation (melting, oxidation, reduction, etc.) temperatures are well-established. In this study, the calibration experiment was performed with four reference materials, i.e., pure Sn, Al-95 wt%Zn eutectic alloy, NiO/carbon nanotube composite, and pure Al, and the calibration curve and formula were obtained. The thermocouple readout of the holder used in this study provided a reliable temperature value with a relative error of <4%.

Effects of Fiber Arrangement Direction on Microstructure Characteristics of NITE-SiC Composites (NITE-SiC 복합재료의 미세구조 특성에 미치는 섬유배열방향 영향)

  • Lee, Young-Ju;Yoon, Han-Ki;Park, Joon-Soo;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.158-161
    • /
    • 2006
  • SiC materials have been extensively studied for high temperature components in advanced energy conversion system and advanced gas turbine. However, the brittle characteristics of SiC such as law fracture toughness and law strain-to fracture impose a severe limitation on the practical applications of SiC materials. SiC/SiC composites can be considered as a promising candidate in various structural materials, because of their good fracture toughness. In this composite system, the direction of SiC fiber will give an effect to the mechanical properties. It is therefore important to control a properdirection of SiC fiber for the fabrication of high performance SiC/SiC composites. In this study, unidirection and two dimension woven structures of SiC/SiC composites were prepared starting from Tyranno SA fiber. SiC matrix was obtained by nano-powder infiltration and transient eutectoid (NITE) process. Effect of microstructure and density on the sintering temperature in NITE-SiC/SiC composites are described and discussed with the fiber direction of unidirection and two dimension woven structures.

  • PDF

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.