Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.2.063

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose  

Dutta, Supritam (Department of Chemical Engineering, L. D. College of Engineering)
Dave, Pragnesh (Department of Chemistry, Sardar Patel University)
Nath, Kaushik (Department of Chemical Engineering, G. H. Patel College of Engineering & Technology)
Publication Information
Membrane and Water Treatment / v.13, no.2, 2022 , pp. 63-72 More about this Journal
Abstract
Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.
Keywords
forward osmosis; flux; ionic liquid; membrane; wastewater;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mondal, D., Mahto, A., Veerababu, P., Bhatt, J., Prasad, K. and Nataraj, S.K. (2015), "Deep eutectic solvents as a new class of draw agent to enrich low abundance DNA and proteins using forward osmosis", RSC Adv., 5(109), 89539-89544. https://doi.org/10.1039/C5RA20735E.   DOI
2 Chun, Y., Mulcahy, D., Zou, L. and Kim, I.S. (2017), "A short review of membrane fouling in forward osmosis processes", Membranes, 7(2), 1-23. https://doi.org/10.3390/membranes7020030.   DOI
3 Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R. and Choi, Y.H. (2013), "Natural deep eutectic solvents as new potential media for green technology", Anal. Chim. Acta, 766, 61-68. https://doi.org/10.1016/j.aca.2012.12.019.   DOI
4 Dutta, S., Dave, P. and Nath, K. (2020), "Performance of low pressure nanofiltration membrane in forward osmosis using magnesium chloride as draw solute", J. Water Proc. Eng., 33, 101092. https://doi.org/10.1016/j.jwpe.2019.101092.   DOI
5 Hayyan, M., Mbous, Y.P., Looi, C.Y., Wong, W.F., Hayyan, A., Salleh, Z. and Mohd-Ali, O. (2016), "Natural deep eutectic solvents: Cytotoxic profile", Springerplus, 5(1), 913. https://doi.org/10.1186/s40064-016-2575-9.   DOI
6 Madhumala, M., Moulik, S., Sankarshana, T. and Sridhar, S. (2017), "Forward-osmosis-aided concentration of fructose sugar through hydrophilized polyamide membrane: Molecular modeling and economic estimation", J. Appl. Polym. Sci., 134(13), 1-12. https://doi.org/10.1002/app.44649.   DOI
7 Noh, M., Mok, Y., Lee, S., Kim, H., Lee, S.H., Jin, G., Seo, J.-H., Koo, H., Park, T.H. and Lee, Y. (2012), "Novel lower critical solution temperature phase transition materials effectively control osmosis by mild temperature changes", Chem. Commun., 48(32), 3845. https://doi.org/10.1039/c2cc30890h.   DOI
8 Xia, S., Yao, L., Yang, R. and Zhou, Y. (2015), "Organic fouling in forward osmosis (FO): Membrane flux behavior and foulant quantification", Membr. Water Treat., 6(2), 161-172. http://doi.org/10.12989/mwt.2015.6.2.161.   DOI
9 Sun, Y., Bai, Y., Tian, J., Gao, S., Zhao, Z. and Cui, F. (2017), "Seawater-driven forward osmosis for direct treatment of municipal wastewater", Membr. Water Treat., 8(5), 449-462. http://doi.org/10.12989/mwt.2017.8.5.449.   DOI
10 Dutta, S. and Nath, K. (2018b) "Feasibility of forward osmosis using ultra low pressure RO membrane and Glauber salt as draw solute for wastewater treatment", J. Environ. Chem. Eng., 6(4), 5635-5644. https://doi.org/10.1016/j.jece.2018.08.037.   DOI
11 Zhang, Q., De Oliveira Vigier, K., Royer, S. and Jerome, F. (2012), "Deep eutectic solvents: Syntheses, properties and applications", Chem. Soc. Rev. 41(21), 7108. https://doi.org/10.1039/c2cs35178a.   DOI
12 Zhong, Y., Feng, X., Chen, W., Wang, X., Huang, K.W., Gnanou, Y. and Lai, Z. (2016), "Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water", Environ. Sci. Technol., 50(2), 1039-1045. https://doi.org/10.1021/acs.est.5b03747.   DOI
13 Cai, Y. and Hu, X.M. (2016), "A critical review on draw solutes development for forward osmosis", Desalination, 391, 16-29. https://doi.org/10.1016/j.desal.2016.03.021.   DOI
14 Ghadiri, L., Bozorg, A. and Shakeri, A. (2019), "Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter", Membr. Water Treat., 10(6), 417-429. http://doi.org/10.12989/mwt.2019.10.6.417.   DOI
15 Suh, C. and Lee, S. (2013), "Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution", J. Memb. Sci., 427, 365-374. https://doi.org/10.1016/j.memsci.2012.08.033.   DOI
16 The National Academics - Institute of Medicine (2003), "Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline: A report of the standing committee on the scientific evaluation of dietary reference intakes and its panel on folate", The Quarterly Review of Biology, 78(3). https://doi.org/10.1086/380067.   DOI
17 Cai, Y., Shen, W., Wei, J., Chong, T.H., Wang, R., Krantz, W.B., Fane, A.G. and Hu, X. (2015), "Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes", Environ. Sci. Water Res. Technol., 1(3), 341-347. https://doi.org/10.1039/C4EW00073K.   DOI
18 Chekli, L., Phuntsho, S., Kim, J.E., Kim, J., Choi, J.Y., Choi, J.S., Kim, S., Kim, J.H., Hong, S., Sohn, J. and Shon, H.K. (2016), "A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects", J. Membr. Sci. 497, 430-449. https://doi.org/10.1016/j.memsci.2015.09.041.   DOI
19 Dutta, S. and Nath, K. (2019), "Dewatering of brackish water and wastewater by an integrated forward osmosis and nanofiltration system for direct fertigation", Arab. J. Sci. Eng., 44(12), 9977-9986. https://doi.org/10.1007/s13369-019-04102-3.   DOI
20 Dutta, S. and Nath, K. (2018a) "Prospect of ionic liquids and deep eutectic solvents as new generation draw solution in forward osmosis process", J. Water Proc. Eng., 21, 163-176. https://doi.org/10.1016/j.jwpe.2017.12.012.   DOI
21 Giagnorio, M., Ricceri, F., Tagliabue, M. and Zaninetta, L. (2019), "Hybrid forward osmosis - nanofiltration for wastewater reuse : System design", Membranes, 9(5), 8-12. https://doi.org/10.3390/membranes9050061.   DOI
22 Inada, A., Takahashi, T., Kumagai, K. and Matsuyama, H. (2019), "Morpholine derivatives as thermoresponsive draw solutes for forward osmosis desalination", Ind. Eng. Chem. Res., 58(27), 12253-12260. https://doi.org/10.1021/acs.iecr.9b01712.   DOI
23 Mok, Y., Nakayama, D., Noh, M., Jang, S., Kim, T. and Lee, Y. (2013), "Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials", Phys. Chem. Chem. Phys., 15(44), 19510. https://doi.org/10.1039/c3cp52613e.   DOI
24 Kim, S.H., Kwak, S.Y. and Suzuki, T. (2005), "Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane", Environ. Sci. Technol., 39(6), 1764-1770. https://doi.org/10.1021/es049453k.   DOI
25 Doshi, K. and Mungray, A.A. (2020), "Bio-route synthesis of carbon quantum dots from tulsi leaves and its application as a draw solution in forward osmosis", J. Environ. Chem. Eng., 8(5), 104174. https://doi.org/10.1016/j.jece.2020.104174.   DOI
26 Mahto, A., Mondal, D., Polisetti, V., Bhatt, J., Nidhi, M.R., Prasad, K. and Sanna Kotrappanavar, N. (2017), "Sustainable water reclamation from different feed streams by forward osmosis process using deep eutectic solvents as reusable draw solution", Ind. Eng. Chem. Res., 56(49), 14623-14632. https://doi.org/10.1021/acs.iecr.7b03046.   DOI
27 Nakayama, D., Mok, Y., Noh, M., Park, J., Kang, S. and Lee, Y. (2014), "Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control", Phys. Chem. Chem. Phys., 16(11), 5319. https://doi.org/10.1039/c3cp55467h.   DOI
28 NIST Chemistry WebBook (2021), Dimethyl Sulfoxide; NIST, U.S.A.
29 Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S., Elimelech, M. (2015), "Forward osmosis: Where are we now?", Desalination, 356, 271-284. https://doi.org/10.1016/j.desal.2014.10.031.   DOI
30 Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L. and Duarte, A.R.C. (2014), "Natural deep eutectic solvents - solvents for the 21st century", ACS Sustain. Chem. Eng., 2(5), 1063-1071. https://doi.org/10.1021/sc500096j.   DOI
31 Sudeeptha, G., and Thalla, A.K. (2017), "Ranking and comparison of draw solutes in a forward osmosis process", Membr. Water Treat., 8(5), 411-421. http://doi.org/10.12989/mwt.2017.8.5.411.   DOI
32 Tiraferri, A., Yip, N.Y. and Straub, A.P., Romero-Vargas Castrillon, S. and Elimelech, M. (2013), "A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes", J. Membr. Sci., 444, 523-538. https://doi.org/10.1016/j.memsci.2013.05.023.   DOI
33 Taghizadeh, M., Taghizadeh, A., Vatanpour, V., Ganjali, M.R. and Saeb, M.R. (2021), "Deep eutectic solvents in membrane science and technology: Fundamental, preparation, application, and future perspective", Sep. Purif. Technol., 258, 118015. https://doi.org/https://doi.org/10.1016/j.seppur.2020.118015.   DOI
34 Awad, A.M., Jalab, R., Minier-Matar, J., Adham, S., Nasser, M.S. and Judd, S.J. (2019), "The status of forward osmosis technology implementation", Desalination, 461, 10-21. https://doi.org/10.1016/j.desal.2019.03.013.   DOI