DOI QR코드

DOI QR Code

How to Improve the Ductility of Nanostructured Materials

  • Eckert J. (IFW Dresden, Institut fur Festkorperanalytik und Strukturforschung) ;
  • Duhamel C. (IFW Dresden, Institut fur Festkorperanalytik und Strukturforschung) ;
  • Das J. (IFW Dresden, Institut fur Festkorperanalytik und Strukturforschung) ;
  • Scudino S. (IFW Dresden, Institut fur Festkorperanalytik und Strukturforschung) ;
  • Zhang Z. F. (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Kim, K. B. (Department of Advanced Materials Engineering, Sejong University)
  • Published : 2006.10.28

Abstract

Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

Keywords

References

  1. H. Gleiter: Acta Mater. 48 (2000) 1 https://doi.org/10.1016/S1359-6454(99)00285-2
  2. A. Inoue: Acta Mater. 48 (2000) 279 https://doi.org/10.1016/S1359-6454(99)00300-6
  3. C. Suryanarayana: Int. Met. Rev. 40 (1995) 41 https://doi.org/10.1179/imr.1995.40.2.41
  4. C.C. Koch and T.R. Malow: Mater. Sci. Forum 312-314 (1999) 565
  5. E. Ma: Scripta Mater. 49 (2003) 663 https://doi.org/10.1016/S1359-6462(03)00396-8
  6. Y. Champion, C. Langlois, S. Guerin-Mailly, P. Langlois, J.L. Bonnentien and MJ. Hytch: Science 300 (2003) 310 https://doi.org/10.1126/science.1081042
  7. Q. Wei, D. Jia, K.T. Ramesh and E. Ma: Appl. Phys. Lett. 81 (2002) 1240 https://doi.org/10.1063/1.1501158
  8. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman and K.J. Hemker: Phil. Mag. A 80 (2000) 1017 https://doi.org/10.1080/01418610008212096
  9. E. Ma: JOM 58 (2006) 49 https://doi.org/10.1007/s11837-006-0215-5
  10. Y.M. Wang and E. Ma: Acta Mater. 52 (2004) 1699 https://doi.org/10.1016/j.actamat.2003.12.022
  11. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu and S. Suresh: Acta Mater. 53 (2005) 2169 https://doi.org/10.1016/j.actamat.2005.01.031
  12. H. Choi-Yim, R. Busch, U. Koster and W.L. Johnson:Acta Mater. 47 (1999) 2455 https://doi.org/10.1016/S1359-6454(99)00103-2
  13. S. Deledda, J. Eckert and L. Schultz: Scripta Mater. 46 (2002) 31 https://doi.org/10.1016/S1359-6462(01)01191-5
  14. S. Billard, J.P. Fondere, B. Bacroix and G.F. Dirras:Acta Mater. 54 (2006) 411 https://doi.org/10.1016/j.actamat.2005.09.012
  15. Y.M. Wang, M. Chen, F. Zhou and E. Ma: Nature 419 (2002) 912 https://doi.org/10.1038/nature01133
  16. G. He, J. Eckert, W. Loser and L. Schultz: Nature Mater. 2 (2003) 33 https://doi.org/10.1038/nmat792
  17. Q.L. Dai, B.B. Sun, M.L. Sui, G. He, Y. Li, J. Eckert, W.K. Luo and E. Ma: 19 (2004) 2557 https://doi.org/10.1557/JMR.2004.0332
  18. U. Kuhn, J. Eckert, N. Mattern and L. Schultz: Appl. Phys. Lett. 80 (2002) 2478 https://doi.org/10.1063/1.1467707
  19. J. Eckert, U. Kuhn, N. Mattern, G. He and A. Gebert:Intermetallics 10 (2002) 1183 https://doi.org/10.1016/S0966-9795(02)00133-4
  20. C.C. Hays, C.P. Kim and W.L. Johnson: Phys. Rev. Lett. 84 (2000) 2901 https://doi.org/10.1103/PhysRevLett.84.2901
  21. J. Eckert, J. Das and K.B. Kim: Nanostructured composites:Ti-base alloys. Marcel Dekker, NY, USA ed. Encyclopedia of Nanoscience and Nanotechnology. 2006. 40
  22. J. Eckert, U. Kuhn, J. Das, S. Scudino and N. Radtke:Adv. Eng. Mater. 7 (2005) 587 https://doi.org/10.1002/adem.200400225
  23. G. He, J. Eckert, W. Loser and M. Hagiwara: Acta Mater. 52 (2004) 3035 https://doi.org/10.1016/j.actamat.2004.03.006
  24. G. He and W. Loser, Eckert: J. Acta Mater. 51 (2003) 5223 https://doi.org/10.1016/S1359-6454(03)00386-0
  25. J. Das, A. Guth, H.J. KlauB, C. Mickel, W. Loser, J. Eckert, S.K. Roy and L. Schultz: Scripta Mater. 49 (2003) 1189 https://doi.org/10.1016/j.scriptamat.2003.08.015
  26. J. Das, W. Loser, U. Kuhn, J. Eckert, S.K. Roy and L. Schultz: Appl. Phys. Lett. 82 (2003) 4690 https://doi.org/10.1063/1.1587254
  27. S. Scudino, J. Das, M. Stoica, K.B. Kim, M. Kusy and J. Eckert: Appl Phys Lett 88 (2006) 201920 https://doi.org/10.1063/1.2206695
  28. J. Das, K.B. Kim, F. Baier, W. Loser and J. Eckert: Appl Phys Lett 87 (2005) 161907 https://doi.org/10.1063/1.2105998
  29. G. He, J. Eckert and W. Loser: Acta Mater. 51 (2003) 1621 https://doi.org/10.1016/S1359-6454(02)00563-3
  30. G. He and M. Hagiwara: Mater. Trans. JIM 45 (2004) 1555 https://doi.org/10.2320/matertrans.45.1555
  31. Z.F. Zhang, G. He, H.F. Zhang and J. Eckert: Scripta Mater. 52 (2005) 945 https://doi.org/10.1016/j.scriptamat.2004.12.014
  32. Z.F. Zhang, J. Eckert and L. Schultz: Phys. Rev. Lett. 91 (2003) 045505 https://doi.org/10.1103/PhysRevLett.91.045505
  33. J. Eckert, J. Das, K.B. Kim, F. Baier, W. Loser, M. Calin, Z.F. Zhang and A. Gebert: J Alloy Comp 2006 (accepted)
  34. K.B. Kim, J. Das, F. Baier and J. Eckert: Phys. Stat. Sol. a 202 (2005) 2405
  35. K.B. Kim, J. Das, F. Baier and J. Eckert: Appl Phys Lett 86 (2005) 201909 https://doi.org/10.1063/1.1929080
  36. K.B. Kim, J. Das, F. Baier and J. Eckert: Appl Phys Lett 86 (2005) 171909 https://doi.org/10.1063/1.1920424
  37. J. Das, K.B. Kim, W. Xu, W. Loser and J. Eckert: Mater Sci Eng A 2006 (In press)
  38. J. Das, K.B. Kim, F. Baier, W. Loser, A. Gebert and J. Eckert: J. Alloy Comp 2006 (In press)