Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.4.293

Mechanically Workable High-strength Cu-Zr Composite  

Shin, Sang-Soo (Green Technology Center, Korea Institute of Industrial Technology)
Lim, Kyung-Mook (Green Technology Center, Korea Institute of Industrial Technology)
Kim, Eok-Soo (Green Technology Center, Korea Institute of Industrial Technology)
Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.4, 2012 , pp. 293-299 More about this Journal
Abstract
Ultrafine-grained or nanostructured alloys usually lack the strain hardening capability needed to sustain uniform tensile deformation under high stresses. To circumvent this problem, we fabricated the Cu-based composite reinforced with the 3-dimensionally interconnected $Cu_5Zr$ phase using the combined technique of rapid quenching and subsequent hot-rolling. The alloy exhibited a tensile ductility of ~2.5% together with a strength of 1.57 GPa, which exceeds the values of most commercially available Cu-Be alloys. In this study, we elucidated the structural origin of the high strength and tensile ductility of the developed alloy by examining the thermal stability of the $Cu_5Zr$ reinforcing phase and the energy (work) absorption capability of the Cu matrix.
Keywords
eutectic structure; nanostructured alloy; Cu-Zr binary alloy; superlattice; hot-rolling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. C. Harkness, W. D. Spiegelberg, and W. Raymond Cribb, DialogOndisc Books, ASM Handbook Series, Vol. 2, ASM International: Metals Park, OH (1991).
2 F. Sachslehner, Phys. Status Solidi. A 119, 229 (1990).
3 F. Szuecs, C. P. Kim, and W. L. Jonhson, Acta mater. 49, 1507 (2001).   DOI   ScienceOn
4 R. Z, Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).   DOI   ScienceOn
5 C. J. Gilbert, R. O. Ritchie, and W. L. Johnson, Appl. Phys. Lett. 71, 476 (1997).   DOI   ScienceOn
6 Q. S. Zhang, W. Zhang, and G. Q. Xie, A. Inoue, Mater Trans JIM. 48, 1626 (2007).   DOI   ScienceOn
7 G. He, J. Eckert, W. Loser, and L. Schultz, Nature Mater. 2, 33 (2003).   DOI   ScienceOn
8 J. C. Lee, Y. C. Kim, J. P. Ahn, H. S. Kim, S. H. Lee, and B. J. Lee, Acta Mater. 52, 1525 (2004).   DOI   ScienceOn
9 C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000).   DOI   ScienceOn
10 J. Eckert, J. Das, G. He, M. Calin, and K. B. Kim, Mater. Sci. Eng. A 449, 24 (2007).
11 J. Eckert, U. Kuhn, J. Das, S. Scudino, and N. Radtke, Adv. Eng. Mater. 7, 587 (2005).   DOI   ScienceOn
12 C. Biselli and D. G. Morris, Acta Mater. 44, 493 (1996)   DOI   ScienceOn
13 Y. F. Sun, B. C. Wei, Y. R. Wang, W. H. Li, T. L. Cheung, and C. H. Shek, Appl. Phy. Lett. 87, 051905 (2005)   DOI   ScienceOn
14 G. He, J. Eckert, W. Loser, and L. Schulta. Nature. 2, 33 (2003).   DOI   ScienceOn
15 G. He, J. Eckert, W. Loser, and M. Hagiwara, Acta Mater. 52, 3035 (2004).   DOI   ScienceOn
16 B. B. Sun, M. L. Sui, Y.M. Wang, G. He, J. Eckert, and E. Ma, Acta Mater. 54, 1349 (2006).   DOI   ScienceOn
17 K. H. Kim, J. P. Ahn, J. H. Lee, and J. C. Lee, J. Mater. Res. 23, 1987 (2008).   DOI   ScienceOn
18 K. H. Kim, J. P. Ahn, Y. M. Kim, B. J. Lee, and J. C. Lee, Scr. Mater. 58, 5 (2008).
19 S. J. Lee, S. W. Lee, K. H. Kim, J. H. Hahn, and J. C. Lee, Scr. Mater. 56, 457 (2007).   DOI   ScienceOn
20 K. C. Thompson-Russell, and J. W. Edington, Electron Microscope Specimen Preparation Techniques in Materials Science, p.37, N. V. Philips' Gloeilampenfabrieken, Eindhoven (1977).
21 J. Das, K. B. Kim, F. Baier, W. Loser, A. Gebert, and J. Eckert, J. Alloy. Compd. 434, 28 (2007).
22 L. C. Zhang, J. Das, H. B. Lu, C. Duhamel, M. Calin, and J. Eckert, Scr. Mater. 57, 101 (2007).   DOI   ScienceOn
23 M. R. Lee, K. W. Park, H. J. Sa, and J. C. Lee, J. Kor. Inst. Met. & Mater. 47, 11, 687 (2009).
24 K. S. Yoon, M. R. Lee, and J. C. Lee, J. Kor. Inst. Met. & Mater. 48, 8, 699 (2009).
25 H. S. Kim, K. S. Yoon, and J. C. Lee, Korean J. Met. Mater. 49, 11, 823 (2011).
26 C. C. Koch, D. G. Morris, K. Lu, and A. Inoue, Mater. Res. Bull. 24, 54 (1999).
27 C.C. Koch, Nanocryst Mater .18, 9 (2003).   DOI
28 H. S. Kim and Y. Estrin, Appl. Phys. Lett. 79, 4115 (2001).   DOI   ScienceOn
29 A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Scr. Mater. 45, 747 (2001).   DOI   ScienceOn
30 D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Y. T. Zhu, and R. Z. Valiev, Appl. Phy. Lett. 79, 611 (2001).   DOI   ScienceOn
31 R. Z. Valiev, Mater. Sci. Eng. A 59, 234 (1997).
32 H. V. Swygenhoven and A. Caro, Nanostruct. Mater. 9, 669 (1997).   DOI   ScienceOn
33 V. Yamakov, D. Wolf, M. Salazar, S. R. Phillpot, and H. Gleiter, Acta Mater. 49, 2713 (2001).   DOI   ScienceOn
34 J. Schiotz, F. D. DiTolla, and K. W. Jacobsen, Nature 391, 561 (1998).   DOI   ScienceOn
35 S. Yip, Nature 391, 669 (1998).   DOI   ScienceOn
36 H. V. Swygenhoven, A. Caro, and M. Spaczer, Acta Mater. 47, 3117 (1999).   DOI   ScienceOn
37 V. Yamakov, D. Wolf, S. R. Phillpot, and A. K. Mukherjee, Nature 1, 45 (2002).   DOI
38 W. F. Gale, and T. C. Totemeier, Smithells Metals Reference Book 8th ed. Elsevier, England (2004).
39 ASM metals handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Pure Metals 9th ed. ASM International, Ohio (1986)
40 S. J. Lee, S. W. Lee, K. H. Kim, J. H. Hahn, and J. C. Lee, J. Kor. Inst. Met. & Mater. 44, 10, 691 (2006).