Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학 (Institute for Structural and Engineering Materials national Institute of Advanced Industrial Science and Technology) ;
  • Tatsuo Tabaru (Institute for Structural and Engineering Materials national Institute of Advanced Industrial Science and Technology) ;
  • Hisatoshi Hirai (Institute for Structural and Engineering Materials national Institute of Advanced Industrial Science and Technology)
  • 발행 : 1999.06.01

초록

To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

키워드

참고문헌

  1. JOM v.47 G.L.Erickson
  2. Proc. of the Int. Symp. C.English;Niobium;H.Stuart(ed.)
  3. JOM v.48 M.R.Jackson;B.P.Bewlay;R.G.Rowe
  4. JOM v.48 P.R.Subramanian;M.G.Mendiratta;D.M.Dimiduk
  5. JOM v.49 B.P.Bewlay;J.J.Lewandowksi;M.R.Jackson
  6. Metall. Trans. v.A24 D.G.Mendiratta;D.M.Dimiduk
  7. Metall. Trans. v.A22 D.G.Mendiratta;J.J.Lewandowski;D.M.Dimiduk
  8. Mater. Trans. v.64 J.B.Sha;H.Hirai;T.Tabaru;A.Kitahara;H.Ueno;S.Hanada
  9. Metall. Trans. v.A27 E.S.K.Menon;P.R.Subramanian;D.M.Dimiduk
  10. Intermetallics v.6 T.Tabaru;S.Hanada
  11. Intermetallics v.7 T.Tabaru;S.Hanada
  12. Mater. Trans. v.64 J.Sha;H.Hirai;T.Tabaru;A.Kitahara;H.Ueno;S.Hanada
  13. Mater. Trans. v.64 H.Hirai;T.Tabaru;H.Ueno;A.Kitahara;S.Hanada
  14. Evolution of Refractory Metals and Alloys R.T.Begley
  15. J. Mater. Res. v.7 W.C.Oliver;G.M.Parr
  16. Int. J. Solids Struct. v.24 A.K.Bhattacharya;W.D.Nix
  17. Binary Alloy Phase Diagram v.2 T.B.Massalski
  18. Proc. 5th Int. Conf. on Comp. Mater. C.R.Crowe;W.C.Harrigan,Jr.(ed.);J.Strife(ed.);A.K.Dhingra(ed.)