• Title/Summary/Keyword: ethanol addition

Search Result 1,490, Processing Time 0.024 seconds

Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 AKT/mTOR/GSK-3β 신호경로 조절을 통한 벌 사상자 추출물(CME)의 apoptosis 및 cell cycle arrest 효과)

  • Lim, Eun Gyeong;Kim, Guen Tae;Kim, Bo Min;Kim, Eun Ji;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2016
  • The Cnidium monnieri (L.) Cusson is an annual plant distributed in China and Korea. The fruit of C. monnieri is used as a medicinal herb that is effective for the treatment of carbuncle and pain in female genitalia. However, the anti-cancer effects of CME have not yet been reported. In this study, we assessed the apoptotic effects and cell cycle arrest effects of ethanol extracts from C. monnieri on HCT116 colon cancer cells. The results of an MTT assay and LDH assay demonstrated a decrease in cell viability and the cytotoxic effects of CME. In addition, the number of apoptotic body and the apoptotic rate were increased in a dose-dependent manner through Hoechst 33342 staining and Annexin V-PI double staining. In addition, cell cycle arrest occurred at the G1 phase by CME. Protein kinase B (Akt) plays an important role in cancer cell survival, growth, and division. Akt down-regulates apoptosis-mediated proteins, such as mammalian target of rapamycin (mTOR), p53, and Glycogen Synthase kinase-3β (GSK-3β). CME could regulate the expression levels of p-Akt, p-mTOR, p-GSK-3β, Bcl-2 family members, caspase-3, and PARP. Furthermore, treatment with CME, LY294002 (PI3K/Akt inhibitor), BIO (GSK-3β inhibitor), and Rapamycin (mTOR inhibitor) showed that apoptotic effects occurred through the regulation of the AKT/mTOR/GSK-3β signaling pathway. Our results demonstrated CME could induce apoptosis and cell cycle arrest in HCT116 colon cancer cells.

Pharmacological Activity of Chaga Mushroom on Extraction Conditions and Immunostimulating Polysaccharide (추출조건에 따른 차가버섯 생리활성 및 면역활성 다당)

  • Baek, Gil-Hun;Jeong, Heon-Sang;Kim, Hoon;Yoon, Taek-Joon;Suh, Hyung-Joo;Yu, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1378-1387
    • /
    • 2012
  • To investigate the pharmacological activity of chaga mushroom (Inonotus obliquus) on extraction conditions, chaga was extracted using water (reflux at $50^{\circ}C$, decoction over $90^{\circ}C$, pressure at $121^{\circ}C$) or ethanol (reflux at 50, 70, or $90^{\circ}C$). When water extract was further fractionated into crude polysaccharide (IO-CP), yields of IO-CP (4.8~16.8%) were higher than those of ethanolic extracts (IO-E, 1.9~2.7%) at increased temperature. For antioxidant activity, crude polysaccharide (IO-CP-121) obtained by pressurized extraction showed the highest polyphenolic and flavonoid contents (35.10 mg TAE/g and 18.48 mg QE/g, respectively) as well as DPPH and ABTS free radical scavenging activities (26.08 and 27.99 mg AEAC/100 mg, respectively). Meanwhile, IO-CP-D (decoction) and IO-CP-50 (reflux) had more potent mitogenic effects (2.10- and 1.95-fold of saline control at 100 ${\mu}g/mL$) as well as intestinal immune system modulating activities (6.30- and 5.74-fold) compared to IO-CP-121, whereas ethanolic extracts showed no activity. Although no IO-CP showed cytotoxicity against RAW 264.7 cells at 0.1 mg/mL, IO-CP-121 significantly inhibited TNF-${\alpha}$ and NO production as pro-inflammatory factors in LPS-stimulated RAW 264.7 cells (29.2 and 63.5%, respectively). Ethanolic extracts also showed no cytotoxicity at 0.1 mg/mL, whereas inhibition of TNF-${\alpha}$ and NO production was significantly low compared to that of IO-CP-121. In addition, active IO-CP-D was further fractionated into an unadsorbed (IO-CP-I) and seven adsorbed fractions (IO-CP-II~VIII) by DEAE-Sepharose CL-6B column chromatography in order to isolate immunostimulating polysaccharide. IO-CP-II showed the most potent mitogenic effect and macrophage stimulating activity (4.51- and 1.64-fold, respectively). IO-CP-II mainly contained neutral sugars (61.86%) in addition to a small amount of uronic acid (2.96%), and component sugar analysis showed that IO-CP-II consisted mainly of Glc, Gal, and Man (molar ratio of 1.00:0.55:0.31). Therefore, extraction conditions affect the physiological activity of chaga, and immunostimulating polysaccharide fractionated from chaga by decoction is composed mainly of neutral sugars.

Study on skin anti-inflammatory activity of fig (Ficus carica L.) fruit extract fractions (무화과(Ficus carica L.) 열매 추출 분획의 피부 항염증 활성 연구)

  • Hee Joon Kwon;Geun soo Lee;Jin Hwa Kim;Soon Woo Kwon;Hyung seo Hwang
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.416-423
    • /
    • 2023
  • Figs has known to have antioxidant, whitening, anti-inflammatory, and antibacterial effects in their leaves, roots, stems, latex, and fruits. In order to develop cosmetic materials based on natural products, we have studied on the skin activity of the ficin in latex as well as the whitening function of the fruit extract with 70% ethanol, and used it as a raw material for released cosmetic product. However, there is little research on the demand for the development of new eutectic solvent extraction methods and its ability to control skin inflammation and psoriasis regulation. Thus, in this study, we evaluated the effectiveness of fig fruit extracts and fractions using eutectic solvent extraction for skin inflammation control and psoriasis. First, fig fruits were extracted under optimal eutectic solvent conditions and fractionated with n-hexane, dichloromethane, ethyl acetate, and butanol. First, the antioxidant activity and inhibition of nitric oxide (NO) production were confirmed in mouse macrophage RAW264.7 cells. In addition, as a result of observing the mRNA expression through RT-PCR, pro-inflammatory cytokines such as TNF-α, IL1α, and IL-1β were suppressed significantly in the hexane, dichloromethane, and ethyl acetate fractions. In addition, it was confirmed in TNF-α stimulated HaCaT keratinocyte model. Finally, chemokine CC motif ligand 20 (CCL20), marker gene of human psoriasis skin disease, was significantly suppressed in the hexane, dichloromethane, and ethyl acetate fractions. These results suggested its anti-inflammatory and skin soothing effect and the possibility of development as an excellent skin soothing natural cosmetic material in the future through future clinical trials.

Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus" (미생물살충제 "비티플러스" 액상 제형화 및 품질 분석 기술에 관한 연구)

  • Eom, Seonghyeon;Park, Hyeonji;Kim, Kyusoon;Hong, Youkyeong;Park, Jiyeong;Choi, Bongki;Kim, Joonsung;Kim, Kunwoo;Kang, Moonsoo;Yang, Kyunghyung;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • A microbial insecticide "Bt-Plus" has been developed to enhance an insecticidal efficacy of an entomopathogenic bacterium, Bacillus thuringiensis (Bt). However, its wettable powder formulation is not preferred by farmers and industry producers due to relatively high cost. This study aimed to develop a soluble concentrate formulation of Bt-Plus. To this end, an optimal mixture ratio of two bacterial culture broths was determined to be 5:4 (v/v) of Bt and Xenorhabdus nematophila (Xn) along with 10% ethanol preservative. In addition, Bt broth was concentrated by 10 times to apply the mixture at 1,000 times fold dilution. The resulting liquid formulation was sprayed on cabbage crop field infested by late instar larvae of the diamondback moth, Plutella xylostella. The field assay showed about 77% control efficacy at 7 days after treatment, which was comparable to those of current commercial biopesticides targeting P. xylostella. For storage test in both low and room temperatures, the liquid formation showed a relatively stable control efficacy at least for a month. To develop a quality control technique to exhibit a stable control efficacy of Bt-Plus, Bt spore density ($5{\times}10^{11}$ spores/mL) and eight active component concentrations of Xn bacterial metabolites in the formulation products have been proposed in this study.

Effect of Extraction Conditions on in vitro Antioxidant Activities of Root Bark Extract from Ulmus pumila L. (추출조건에 따른 유근피 추출물의 항산화 활성)

  • Kim, Jae-Min;Cho, Myoung-Lae;Seo, Kyu-Eun;Kim, Ye-Seul;Jung, Tae-Dong;Kim, Young-Hyun;Kim, Dan-Bi;Shin, Gi-Hae;Oh, Ji-Won;Lee, Jong Seok;Lee, Jin-Ha;Kim, Jong-Yae;Lee, Dae-Won;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1172-1179
    • /
    • 2015
  • This study investigated optimal extraction conditions for application of Ulmus pumila L. as a natural antioxidant. U. pumila L. was extracted using ethanol (EtOH) at various concentrations (0, 40, and 80%) and extraction times (1, 2, and 3 h) at $70^{\circ}C$ and then evaluated for extraction yield, total phenolic contents, total flavonoid contents, as well as antioxidant activities [2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, reducing power, and oxygen radical absorbing capacity (ORAC)]. Antioxidant activities were correlated with total phenolic and flavonoid contents. Of the solvent conditions, 80% EtOH extracts for 3 h at $70^{\circ}C$ showed the highest total phenolic and flavonoid contents with strong antioxidant activities, although there were no significant time effects on DPPH and ABTS radical scavenging activities and reducing power. However, ORAC values of all EtOH extracts remarkably increased in a time-dependent manner. In addition, 80% EtOH extract for 3 h exhibited strong antioxidant effects on HDF and 3T3-L1 cells. Therefore, the antioxidant capacity of U. pumila L., may due to phenolic and flavonoid contents, and extraction conditions were 80% EtOH for 3 h at $70^{\circ}C$. This extract could be a good source for natural antioxidants.

Effects of Pomace of Schizandra chinensis, Schizandrin, and Gomisin A on LPS-induced Inflammatory Responses in RAW264.7 Cells (오미자 박, schizandrin 및 gomisin A에 의한 RAW264.7 세포주에서 lipopolysaccharide로 유도된 염증 반응의 억제)

  • Seo, Yu-Mi;Kim, Hyun-Ji;Lee, Eun-Joo;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2018
  • Schizandra chinensis has been used as a traditional Chinese medicine and is known to have various bioactive components, including schizandrin and gomisin A. In the current study, we investigated the anti-inflammatory activities and their working mechanisms of ethanol extracts of pomace of Schizandra chinensis (PSC), schizandrin (SZ), and gomisin A (GA). First, we analyzed the effects of PSC on nitric oxide (NO) production and cell viabilities in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results indicated that PSC dramatically reduced NO production in LPS-activated RAW264.7 cells in a dose-dependent manner without affecting cell viabilities. PSC also decreased the expression of pro-inflammatory genes iNOS and COX-2, whereas the expression of TNF-${\alpha}$ was not affected by PSC. In addition, PSC inhibited phosphorylation of p38, ERK1/2, and JNK but did not change the expression of their total protein. The results indicate that PSC can regulate LPS-induced inflammatory responses by suppressing MAPK (mitogen-activated protein kinase) signaling. We also analyzed the effects of SZ and GA on NO production and cell viabilities in RAW264.7 cells. The results showed that SZ and GA also decreased NO production in a dose-dependent manner in LPS-activated RAW 264.7 cells without affecting cell viabilities. SZ reduced the expression of iNOS, whereas GA downregulated iNOS and COX-2. Overall, these findings clarify the molecular mechanisms of the anti-inflammatory effects mediated by PSC, SZ, and GA.

Characterization of a Psychrophilic Metagenome Esterase EM2L8 and Production of a Chiral Intermediate for Hyperlipemia Drug (메타게놈유래의 저온성 에스터라제 EM2L8의 효소적 특성과 이를 활용한 고지혈증 치료제 키랄소재의 생산)

  • Jung, Ji-Hye;Choi, Yun-Hee;Lee, Jung-Hyun;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.118-124
    • /
    • 2009
  • Esterase EM2L8 gene isolated from deep sea sediment was expressed in Escherichia coli BL21 (DE3) and the esterase activity of the cell-free extract was assayed using p-nitrophenyl butyrate-spectrophotometric method. Its optimum temperature was $40-45^{\circ}C$ and 45% activity of the maximum activity was retained at $15^{\circ}C$. The activation energy at $15-45^{\circ}C$ was calculated to be 4.9 kcal/mol showing that esterase EM2L8 was a typical cold-adapted enzyme. Enzyme activity was maintained for 6 h and 4 weeks at $30^{\circ}C$ and $4^{\circ}C$, respectively. When each ethanol, methanol, and acetone was added to the reaction mixture to 15% concentration, enzyme activity was maintained. In the case of DMSO, enzyme activity was kept up to 40% concentration. (S)-4-Chloro-3-hydroxy butyric acid is a chiral intermediate for the synthesis of Atorvastatin, a hyperlipemia drug. When esterase EM2L8 (40 U) was added to buffer solution (1.2 mL, pH 9.0) containing ethyl-(R,S)-4-chloro-3-hydroxybutyrate (38 mM), it was hydrolyzed into 4-chloro-3-hydroxy butyric acid with a rate of $6.8\;{\mu}mole/h$. The enzyme hydrolyzed (S)-substrate more rapidly than (R)-substrate. When conversion yield was 80%, e.e.s value was 40%. When DMSO was added, hydrolysis rate increased to $10.4\;{\mu}mole/h$. The plots of conversion yield vs e.e.s in the presence or absence of DMSO were almost same, implying that the reaction enantioselectivity was not changed by the addition of DMSO. Taken together, esterase EM2L8 had high activity and stability at low temperatures as well as in various organic solvents/aqueous solutions. These properties suggested that it could be used as a biocatalyst in the synthesis of useful pharmaceuticals.

Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma (갈색거저리 유충 추출물의 간암세포에 대한 세포독성 효능)

  • Lee, Ji-Eun;Lee, An-Jung;Jo, Da-Eun;Cho, Ju Hyeong;Youn, Kumju;Yun, Eun-Young;Hwang, Jae-Sam;Jun, Mira;Kang, Byoung Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.200-207
    • /
    • 2015
  • Various natural products or their derivatives, mostly originating from plants, fungi, and bacteria, have been exploited as therapeutic drugs to treat various human diseases. In addition to previously explored organisms, research on natural compounds has now expanded into unexamined living organisms in order to identify novel bioactive substances. Here, we determined whether or not the larval form of the mealworm beetle Tenebrio molitor, a species of darkling beetle, contains cytotoxic substances that exclusively affect cancer cell viability. Ethanol extract and its solvent partitioned fractions, hexane and ethyl acetate fractions, showed anticancer effects against various human cancer cells derived from the prostate (PC3 and 22Rv1), cervix (HeLa), liver (PLC/PRF5, HepG2, Hep3B, and SK-HEP-1), colon (HCT116), lung (NCI-H460), breast (MDA-MB231), and ovary (SKOV3). Cell death induced by the fractions was a mix of apoptosis, necrosis, and autophagy. The hexane fraction was administered intraperitoneally to nude mice bearing a hepatocellular carcinoma SK-HEP-1 and showed inhibition of tumor growth in vivo. Therefore, we concluded that worm extracts contain cytotoxic substances, which can be enriched by proper fractionation protocols, and further separation and purification could lead to the identification of novel molecules to treat human cancers.

Quality Characteristics of Korean Traditional Rice Wine with Glutinous Rice (찹쌀 첨가에 따른 전통발효주의 품질 특성)

  • Lee, Youngseung;Kim, Hanna;Eom, Taekil;Kim, Sung-Hwan;Choi, Geun Pyo;Kim, Misook;Yu, Sungryul;Jeong, Yoonhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1829-1836
    • /
    • 2013
  • This study is carried out to investigate the physicochemical characteristics, microbial population, and sensory characteristics during fermentation of Korean traditional rice wine with addition of glutinous rice. The fed-batch fermentation of rice was performed by Nuruk and yeast for 10 days at $28^{\circ}C$ in a water bath. The four fermentation batches included 0, 10, 15 and 20% of glutinous rice based on the total rice contents. The growth of total viable cells, lactic acid bacteria (LAB), and yeasts were similar among the four batches during the fermentation period. The population for total viable cells and LAB were increased for the first 3 days, and decreased slowly until 10 days. The number of yeast cells was rapidly decreased after day 6, when the alcohol content reached about 15% for all the fermentation batches. Physicochemical characteristics, such as pH, total acidity, and reducing sugars, were not different with the increase of additional glutinous rice contents. The ethanol production was higher in Korean traditional rice wine from non-glutinous rice (17.1%) than ones from glutinous rice (15.8~16.7%). For the sensory evaluations, Korean traditional rice wine with 15% glutinous rice was highly preferred due to the highest sweetness.

Pharmacological Activities of Coffee Roasted from Fermented Green Coffee Beans with Fungal Mycelia in Solid-state Culture (진균류 균사체의 고체발효 커피생두로부터 조제한 원두커피의 생리활성)

  • Shin, Ji-Young;Kim, Hoon;Kim, Dong-Gu;Baek, Gil-Hun;Jeong, Heon-Sang;Yu, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.487-496
    • /
    • 2013
  • Green coffee beans (CB, Indonesian Mandheling) were fermented with three kinds of mushrooms (Phellinus linteus, PL; Hericium erinaceum, HE; Ganoderma lucidum, GL) or two kinds of mycelia from molds (Monascus purpureus, MP; Monascus ruber, MR) using solid-state culture to enhance physiological activity. After the roasting of fermented green coffee beans, roasted coffees were extracted with a hot-water decoction or 95% ethanol reflux. Yields from hot water extracts (HW, 17.7~25.3%) were higher than those from ethanolic extracts (EE, 9.5~12.2%). Hot-water extracts of roasted coffees from green coffee beans fermented with two molds (MP-CB-HW and MR-CB-HW) showed higher total polyphenols, flavonoids, and DPPH free radical scavenging activity than roasted coffees from non-fermented (CB-HW) or fermented green coffee beans with the three mycelia from mushrooms. MR-CB-HW also had the most potent macrophage stimulating and mitogenic activity (1.32 and 1.40-fold of CB-HW, respectively). In addition, MP-CB-EE and MR-CB-EE did not show any cytotoxicity to the RAW 264.7 cell at a concentration of $100{\mu}g/mL$, and these extracts significantly inhibited nitric oxide (NO) production from the LPS-stimulated RAW 264.7 cell line (38.6 and 37.0% of the LPS-treated group). Meanwhile, the chlorogenic acid concentrations of MP-CB-HW or MR-CB-HW highly increased (to 76.21 or $76.73{\mu}g/mL$, respectively), but caffeine concentrations were not affected by solid-state fermentation. In conclusion, the physiological activities of roasted coffees were enhanced by the solid-state culture of green coffee beans with M. purpureus or M. ruber, suggesting that these roasted coffees could possibly serve industrial applications as functional coffee beverages.