Browse > Article
http://dx.doi.org/10.3746/jkfn.2015.44.2.200

Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma  

Lee, Ji-Eun (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Lee, An-Jung (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Jo, Da-Eun (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Cho, Ju Hyeong (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Youn, Kumju (Department of Food Science and Nutrition, Dong-A University)
Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Jun, Mira (Department of Food Science and Nutrition, Dong-A University)
Kang, Byoung Heon (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.44, no.2, 2015 , pp. 200-207 More about this Journal
Abstract
Various natural products or their derivatives, mostly originating from plants, fungi, and bacteria, have been exploited as therapeutic drugs to treat various human diseases. In addition to previously explored organisms, research on natural compounds has now expanded into unexamined living organisms in order to identify novel bioactive substances. Here, we determined whether or not the larval form of the mealworm beetle Tenebrio molitor, a species of darkling beetle, contains cytotoxic substances that exclusively affect cancer cell viability. Ethanol extract and its solvent partitioned fractions, hexane and ethyl acetate fractions, showed anticancer effects against various human cancer cells derived from the prostate (PC3 and 22Rv1), cervix (HeLa), liver (PLC/PRF5, HepG2, Hep3B, and SK-HEP-1), colon (HCT116), lung (NCI-H460), breast (MDA-MB231), and ovary (SKOV3). Cell death induced by the fractions was a mix of apoptosis, necrosis, and autophagy. The hexane fraction was administered intraperitoneally to nude mice bearing a hepatocellular carcinoma SK-HEP-1 and showed inhibition of tumor growth in vivo. Therefore, we concluded that worm extracts contain cytotoxic substances, which can be enriched by proper fractionation protocols, and further separation and purification could lead to the identification of novel molecules to treat human cancers.
Keywords
Tenebrio molitor; anticancer activity; extract fractionation; hepatocellular carcinoma;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Han SR, Yun EY, Kim JY, Hwang JS, Jeong EJ, Moon KS. 2014. Evaluation of genotoxicity and 28-day oral dose toxicity on freeze-dried powder of Tenebrio molitor Larvae (yellow mealworm). Toxicol Res 30: 121-130.   DOI
2 Moon HJ, Lee SY, Kurata S, Natori S, Lee BL. 1994. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem 116: 53-58.   DOI
3 Lee YJ, Chung TJ, Park CW, Hahn Y, Chung JH, Lee BL, Han DM, Jung YH, Kim S, Lee Y. 1996. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem Biophys Res Commun 218: 6-11.   DOI
4 Youn K, Jun M. 2013. In vitro BACE1 inhibitory activity of geraniin and corilagin from Geranium thunbergii. Planta Med 79: 1038-1042.   DOI
5 Li WC, Ralphs KL, Tosh D. 2010. Isolation and culture of adult mouse hepatocytes. Methods Mol Biol 633: 185-196.   DOI
6 Shen L, Hillebrand A, Wang DQ, Liu M. 2012. Isolation and primary culture of rat hepatic cells. J Vis Exp 64: 3917.
7 Sreejit P, Kumar S, Verma RS. 2008. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell Dev Biol Anim 44: 45-50.   DOI
8 Suh HJ, Kang SC. 2012. Antioxidant activity of aqueous methanol extracts of Protaetia brevitarsis Lewis (Coleoptera: Scarabaedia) at different growth stages. Nat Prod Res 26: 510-517.   DOI
9 Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. 1991. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51: 2515-2520.
10 Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107-120.   DOI
11 Edinger AL, Thompson CB. 2004. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663-669.   DOI
12 Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M, Pacher P. 2007. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2: 2295- 2301.   DOI
13 Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. 1994. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84: 1415-1420.
14 Denecker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, Zhivotovsky B, Fiers W, Grooten J, Declercq W, Vandenabeele P. 2001. Death receptor- induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 8: 829-840.   DOI
15 Mizushima N, Yoshimori T. 2007. How to interpret LC3 immunoblotting. Autophagy 3: 542-545.   DOI
16 Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia- Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. 2010. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90: 1383-1435.   DOI
17 Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. 2003. Mechanisms of Taxol resistance related to microtubules. Oncogene 22: 7280-7295.   DOI
18 Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, Zweibel J, Collins J, Doroshow JH. 2010. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov 9: 843-856.   DOI
19 Siddik ZH. 2003. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265-7279.   DOI
20 Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. 2004. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185-229.   DOI
21 Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S. 2006. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5: 835-844.   DOI
22 Bruix J, Sherman M. 2011. Management of hepatocellular carcinoma: an update. Hepatology 53: 1020-1022.   DOI
23 Lachance H, Wetzel S, Kumar K, Waldmann H. 2012. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55: 5989-6001.   DOI
24 Clardy J, Walsh C. 2004. Lessons from natural molecules. Nature 432: 829-837.   DOI
25 Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75: 311-335.   DOI   ScienceOn
26 Berenbaum MR, Eisner T. 2008. Ecology. Bugs' bugs. Science 322: 52-53.   DOI
27 Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. 2011. Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41: 747-769.   DOI   ScienceOn
28 Dossey AT. 2010. Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27: 1737-1757.   DOI
29 Lord CJ, Ashworth A. 2010. Biology-driven cancer drug development: back to the future. BMC Biol 8: 38.   DOI
30 Cherniack EP. 2010. Bugs as drugs, Part 1: Insects: the "new" alternative medicine for the 21st century? Altern Med Rev 15: 124-135.
31 Kamb A, Wee S, Lengauer C. 2007. Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6: 115-120.   DOI
32 Patel MN, Halling-Brown MD, Tym JE, Workman P, Al- Lazikani B. 2013. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov 12: 35-50.
33 Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras- Ferraros C, Cuyas E, Martin-Castillo B, Lopez-Bonet E, Alarcon T, Vazquez-Martin A. 2013. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 12: 1166-1179.   DOI
34 Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Los M. 2013. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17: 12-29.   DOI   ScienceOn
35 Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674.   DOI
36 Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol 65: 207-216.   DOI
37 Simon E, Baranyai E, Braun M, Fabian I, Tothmeresz B. 2013. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biol Trace Elem Res 154: 81-87.   DOI
38 Youn K, Yun EY, Lee J, Kim JY, Hwang JS, Jeong WS, Jun M. 2014. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies. J Med Food 17: 284-289.   DOI