Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus" |
Eom, Seonghyeon
(Department of Bioresource Sciences, Andong National University)
Park, Hyeonji (Department of Bioresource Sciences, Andong National University) Kim, Kyusoon (Department of Bioresource Sciences, Andong National University) Hong, Youkyeong (Department of Bioresource Sciences, Andong National University) Park, Jiyeong (Department of Bioresource Sciences, Andong National University) Choi, Bongki (Department of Bioresource Sciences, Andong National University) Kim, Joonsung (Department of Bioresource Sciences, Andong National University) Kim, Kunwoo (Department of Bioresource Sciences, Andong National University) Kang, Moonsoo (YA Korea, Inc.) Yang, Kyunghyung (YA Korea, Inc.) Kim, Yonggyun (Department of Bioresource Sciences, Andong National University) |
1 | Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. DOI ScienceOn |
2 | Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129. DOI ScienceOn |
3 | Gill, S.S., Cowles, E.A., Pietrantonio, P.V., 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615-636. DOI ScienceOn |
4 | Herbert, E. E., Goodrich-Blair, H,. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat Rev. Microbial. 5: 634-646. DOI ScienceOn |
5 | Hoffman, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S., Van Mellaert, H., 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85, 7844-7848. DOI ScienceOn |
6 | Jenkins, J.I., Dean, D.H., 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York. |
7 | Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. DOI ScienceOn |
8 | Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. DOI ScienceOn |
9 | Lee, S., Hong, Y.P., Seo, S., Kim, Y., Choi, J., 2012. Identification, synthesis, and biological activities of cyclic L-prolyl-L-tyrosine. J. Korean Chem. Soc. 56, 661-664. 과학기술학회마을 DOI ScienceOn |
10 | Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. DOI ScienceOn |
11 | Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. DOI ScienceOn |
12 | SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C. |
13 | Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806. |
14 | Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178. 과학기술학회마을 DOI ScienceOn |
15 | Seo, S., Lee, S., Hong, Y.P., Kim, Y., 2012. Chemical identification and biological characterization of phospholipase inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. DOI |
16 | Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. DOI ScienceOn |
17 | Tanada, Y., Kaya, H.K. 1993. Insect pathology, Academic Press, San Diego. |
18 | Stanley, D., 2006. Prostaglandins and other eicosanoids in insects:biological significance. Annu. Rev. Entomol. 51, 25-44. DOI ScienceOn |
19 | Stanley, D., Kim, Y., 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011.00105. DOI ScienceOn |
20 | Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785. DOI ScienceOn |
21 | Zhang, X., Griko, N.B., Corona, S.K., Bulla, Jr., L.A., 2008. Enhanced exocytosis of the receptor BT- induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149, 581-588. DOI ScienceOn |