Browse > Article
http://dx.doi.org/10.5656/KSAE.2013.04.1.086

Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus"  

Eom, Seonghyeon (Department of Bioresource Sciences, Andong National University)
Park, Hyeonji (Department of Bioresource Sciences, Andong National University)
Kim, Kyusoon (Department of Bioresource Sciences, Andong National University)
Hong, Youkyeong (Department of Bioresource Sciences, Andong National University)
Park, Jiyeong (Department of Bioresource Sciences, Andong National University)
Choi, Bongki (Department of Bioresource Sciences, Andong National University)
Kim, Joonsung (Department of Bioresource Sciences, Andong National University)
Kim, Kunwoo (Department of Bioresource Sciences, Andong National University)
Kang, Moonsoo (YA Korea, Inc.)
Yang, Kyunghyung (YA Korea, Inc.)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.52, no.2, 2013 , pp. 115-123 More about this Journal
Abstract
A microbial insecticide "Bt-Plus" has been developed to enhance an insecticidal efficacy of an entomopathogenic bacterium, Bacillus thuringiensis (Bt). However, its wettable powder formulation is not preferred by farmers and industry producers due to relatively high cost. This study aimed to develop a soluble concentrate formulation of Bt-Plus. To this end, an optimal mixture ratio of two bacterial culture broths was determined to be 5:4 (v/v) of Bt and Xenorhabdus nematophila (Xn) along with 10% ethanol preservative. In addition, Bt broth was concentrated by 10 times to apply the mixture at 1,000 times fold dilution. The resulting liquid formulation was sprayed on cabbage crop field infested by late instar larvae of the diamondback moth, Plutella xylostella. The field assay showed about 77% control efficacy at 7 days after treatment, which was comparable to those of current commercial biopesticides targeting P. xylostella. For storage test in both low and room temperatures, the liquid formation showed a relatively stable control efficacy at least for a month. To develop a quality control technique to exhibit a stable control efficacy of Bt-Plus, Bt spore density ($5{\times}10^{11}$ spores/mL) and eight active component concentrations of Xn bacterial metabolites in the formulation products have been proposed in this study.
Keywords
Bt-Plus; microbial pesticide; Bacillus thuringiensis; Xenorhabdus nematophila; Plutella xylostella;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199.   DOI   ScienceOn
2 Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129.   DOI   ScienceOn
3 Gill, S.S., Cowles, E.A., Pietrantonio, P.V., 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615-636.   DOI   ScienceOn
4 Herbert, E. E., Goodrich-Blair, H,. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat Rev. Microbial. 5: 634-646.   DOI   ScienceOn
5 Hoffman, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S., Van Mellaert, H., 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85, 7844-7848.   DOI   ScienceOn
6 Jenkins, J.I., Dean, D.H., 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
7 Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589.   DOI   ScienceOn
8 Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264.   DOI   ScienceOn
9 Lee, S., Hong, Y.P., Seo, S., Kim, Y., Choi, J., 2012. Identification, synthesis, and biological activities of cyclic L-prolyl-L-tyrosine. J. Korean Chem. Soc. 56, 661-664.   과학기술학회마을   DOI   ScienceOn
10 Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476.   DOI   ScienceOn
11 Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699.   DOI   ScienceOn
12 SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
13 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
14 Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178.   과학기술학회마을   DOI   ScienceOn
15 Seo, S., Lee, S., Hong, Y.P., Kim, Y., 2012. Chemical identification and biological characterization of phospholipase $A_2$ inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823.   DOI
16 Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782.   DOI   ScienceOn
17 Tanada, Y., Kaya, H.K. 1993. Insect pathology, Academic Press, San Diego.
18 Stanley, D., 2006. Prostaglandins and other eicosanoids in insects:biological significance. Annu. Rev. Entomol. 51, 25-44.   DOI   ScienceOn
19 Stanley, D., Kim, Y., 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011.00105.   DOI   ScienceOn
20 Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785.   DOI   ScienceOn
21 Zhang, X., Griko, N.B., Corona, S.K., Bulla, Jr., L.A., 2008. Enhanced exocytosis of the receptor BT-$R_1$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149, 581-588.   DOI   ScienceOn