• Title/Summary/Keyword: etching damage

Search Result 176, Processing Time 0.028 seconds

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

Damage on the Surface of Zinc Oxide Thin Films Etched in Cl-based Gas Chemistry

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) thin films deposited by the atomic layer deposition method. The gases of the inductively coupled plasma chemistry consisted of $Cl_2$, Ar, and $O_2$. The maximum etch rate was 40.3 nm/min at a gas flow ratio of $Cl_2$/Ar=15:5 sccm, radio-frequency power of 600 W, bias power of 200 W, and process pressure of 2 Pa. We also investigated the plasma induced damage in the etched ZnO thin films using X-ray diffraction (XRD), atomic force microscopy and photoluminescence (PL). A highly oriented (100) peak was present in the XRD spectroscopy of the ZnO samples. The full width at half maximum value of the ZnO sample etched using the $O_2/Cl_2$/Ar chemistry was higher than that of the as-deposited sample. The roughness of the ZnO thin films increased from 1.91 nm to 2.45 nm after etching in the $O_2/Cl_2$/Ar plasma chemistry. Also, we obtained a strong band edge emission at 380 nm. The intensities of the peaks in the PL spectra from the samples etched in all of the chemistries were increased. However, there was no deep level emission.

Study on Etching Damages of YMnO3 Thin Films by Cl-based Plasma (Cl-based 플라즈마에 의한 YMnO3 박막의 식각 damage에 관한 연구)

  • 박재화;기경태;김동표;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.449-453
    • /
    • 2003
  • Ferroelectric YMnO$_3$ thin films were etched with Ar/Cl$_2$ and CF$_4$/Cl$_2$ inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ thin film was 300 $\AA$/min at a Ar/Cl$_2$ gas mixing ratio of 2/8, a RF power of 800 W, a DE bias of 200 V, a chamber pressure of 15 mTorr, and a substrate temperature of 30 $^{\circ}C$. From the X-ray photoelectron spectroscopy (XPS) analysis, yttrium etched by chemical reactions with Cl radicals assisted by Ar ion bombardments in Ar/Cl$_2$ plasma. In CF$_4$/Cl$_2$ plasma, yttrium are remained on the etched surface of YMnO$_3$ and formed of nonvolatile YF$_{x}$ compounds manganese etched effectively by chemical reactions with Cl and F radicals. From the X-ray diffraction (XRD) analysis, the (0004) diffraction peak intensity of the YMnO$_3$ thin film etched in Ar/Cl$_2$ plasma shows lower value than that in CF$_4$/Cl$_2$ plasma. It indicates that the crystallinty of YMnO$_3$ thin film is more easily damaged by the Ar ion bombardment than the changes of stoichiometry due to nonvolatile etch by-products.s.

Study of plasma induced charging damage and febrication of$0.18\mu\textrm{m}$dual polysilicon gate using dry etch (건식각을 이용한 $0.18\mu\textrm{m}$ dual polysilicon gate 형성 및 plasma damage 특성 평가)

  • 채수두;유경진;김동석;한석빈;하재희;박진원
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.490-495
    • /
    • 1999
  • In 0.18 $\mu \textrm m$ LOGIC device, the etch rate of NMOS polysilicons is different from that of PMOS polysilicons due to the state of polysilicon to manufacture gate line. To control the etch profile, we tested the ratio of $Cl_2$/HBr gas and the total chamber pressure, and also we reduced Back He pressure to get the vertical profile. In the case of manufacturing the gate photoresist line, we used Bottom Anti-Reflective Coating (BARC) to protect refrection of light. As a result we found that $CF_4O_2$ gas is good to etch BARC, because of high selectivity and good photoresist line profile after etching BARC. in the results of the characterization of plasma damage to the antenna effect of gate oxide, NO type thin film(growing gate oxide in 0, ambient followed by an NO anneal) is better than wet type thin film(growing gate oxide in $0_2+H_2$ ambient).

  • PDF

Advanced surface processing of NLO borate crystals for UV generation

  • Mori, Yusuke;Kamimur, Tomosumi;Yoshimura, Masashi;Sasaki, Takatomo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.459-462
    • /
    • 1999
  • Recent advances in NLO Borate Crystals for UV Generation are reviewed with the particular emphasis on the technique to improve the life time of UV optics. The laser-damage resistance of CLBO and fused silica surfaces was successfully improved after removing polishing compound by ion beam etching. The polishing compound embedded in the CLBO and fused silica surfaces were to a depth of less than 100nm. We were able to remove polishing compound without degrading the surface condition when the applied ion beam voltage was less than 200 V. The laser-induced surface damage threshold of CLBO was improved up to 15J/$\textrm{cm}^2$(wavelength: 355 nm, pulse width: 0.85 ns)as compared with that of the as-polished surface (11 J/$\textrm{cm}^2$). The laser-induced surface damage of fused silica also increased from 7.5J/$\textrm{cm}^2$ to 15J/$\textrm{cm}^2$. For the irradiation of a 266 nm high-intensity and high-repetition laser light, the surface lifetime of CLBO and fused silica could be more doubled compared with that of the as-polished surface.

  • PDF

Layer-by-layer Control of MoS2 Thickness by ALET

  • Kim, Gi-Hyeon;Kim, Gi-Seok;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.234.1-234.1
    • /
    • 2015
  • Molybdenum disulfide (MoS2)는 van der Waals 결합을 통한 층상구조의 물질로써 뛰어난 물리화학적, 기계적 특성으로 Field Effect Transistors (FETs), Photoluminescence, Photo Detectors, Light Emitters 등의 많은 분야에서 연구가 보고 되어지고 있는 차세대 2D-materials이다. 이처럼 MoS2 가 다양한 범위에 응용될 수 있는 이유는 layer 수가 증가함에 따라 1.8 eV의 direct band gap 에서 1.2 eV 의 indirect band-gap으로 특성이 변화할 뿐만 아니라 다양한 고유의 전기적 특성을 지니고 있기 때문이다. 그러나 MoS2 는 원자층 단위의 layer control 이 어렵다는 이유로 다양한 전자소자 응용에 많은 제약이 보고 되어졌다. 본 연구에서는 MoS2 의 layer를 control 하기 위해 ICP system 에서 mesh grid 를 삽입하여 Cl2 radical을 효과적으로 adsorption 시킨 뒤, Ion beam system 에서 Ar+ Ion beam 을 통해 한 층씩 제거하는 방식의 atomic layer etching (ALE) 공정을 진행하였다. ALE 공정시 ion bombardment 에 의한 damage 를 최소화하기 위해 Quadruple Mass Spectrometer (QMS) 를 통한 에너지 분석으로 beam energy 를 20 eV에서 최적화 할 수 있었고, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy(AFM) 분석을 통해 ALE 공정에 따른 MoS2 layer control 가능 여부를 증명할 수 있었다.

  • PDF

Single Grained PZT Array Fabricated by Physical Etching of Pt Bottom Electrode

  • Park, Eung-Chul;Lee, Jang-Sik;Kim, Kwang-Ho;Park, Jung-Ho;Lee, Byung-Il
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.74-77
    • /
    • 2000
  • Ta-doped PZT thin films prepared by reactive co-sputtering method could be transformed into single grained perovskite structure utilizing physical etching of Pt bottom electrode. It is found that PZT perovskite phase on damaged (111) Pt electrode by IMD was more easily crystallized than random oriented Pt electrode and less crystallized than (111) Pt electrode. This shows that amorphized Pt electrode surface by IMD process has an effect on crystallization of PZT perovskite phase. 40$\mu\textrm{m}\times40\mu\textrm{m}$ square shape single grain PZT array could be obtained utilizing the difference of incubation time for nucleation of rosettes between ion damaged Pt and (111) oriented Pt electrode. Single grained PZT thin films show low leakage current density of $1\times10^{-7}$ A/$\textrm{cm}^2$ and high break down field of 440kV/cm. The loss of remanent polarization after $10^{11}$ cycles was less than 15% of initial value.

  • PDF

Effect of the fixed oxide charge on the metal-oxide-silicon-on-insulator structures (metal-oxide-silicon-on-insulator 구조에서 고정 산화막 전하가 미치는 영향)

  • Jo, Yeong-Deuk;Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Koh, Jung-Hyuk;Ha, Jae-Geun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.83-83
    • /
    • 2008
  • Metal-oxide-silicon-on-insulator (MOSOI) structures were fabricated to study the effect caused by reactive ion etching (RIE) and sacrificial oxidation process on silicon-on-insulator (SOI) layer. The MOSOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching treatment. The measured C-V curves were compared to the numerical results from 2-dimensional (2-D) simulations. The measurements revealed that the profile of C-V curves significantly changes depending on the SOI surface condition of the MOSOI capacitors. The shift in the measured C-V curves, due to the difference of the fixed oxide charge ($Q_f$), together with the numerical simulation analysis and atomic force microscopy (AFM) analysis, allowed extracting the fixed oxide charges ($Q_f$) in the structures as well as 2-D carrier distribution profiles.

  • PDF

40nm InGaAs HEMT's with 65% Strained Channel Fabricated with Damage-Free $SiO_2/SiN_x$ Side-wall Gate Process

  • Kim, Dae-Hyun;Kim, Suk-Jin;Kim, Young-Ho;Kim, Sung-Wong;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • Highly reproducible side-wall process for the fabrication of the fine gate length as small as 40nm was developed. This process was utilized to fabricate 40nm InGaAs HEMTs with the 65% strained channel. With the usage of the dual $SiO_2$ and $SiN_x$ dielectric layers and the proper selection of the etching gas, the final gate length (Lg) was insensitive to the process conditions such as the dielectric over-etching time. From the microwave measurement up to 40GHz, extrapolated fT and fmax as high as 371 and 345 GHz were obtained, respectively. We believe that the developed side-wall process would be directly applicable to finer gate fabrication, if the initial line length is lessened below the l00nm range.

The Electrical Improvement of PZT Thin Films Etched into CF4/(Cl2+Ar) Plasma

  • Koo Seong-Mo;Kim Kyoung-Tae;Kim Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.223-226
    • /
    • 2004
  • The PZT thin films are one of well-known materials that has been widely studied for ferroelectric random access memory (FRAM). We etched the PZT thin films by $CF_{4}/(Cl_{2}+Ar)$ plasma and investigated improvement in etching damage by $O_{2}$ annealing. The maximum etch rate of the PZT thin films was 157 nrn/min and that the selectivity of the PZT thin films to Pt was 3.1 when $CF_{4}(30{\%})$ was added to a $Cl_{2}(80{\%})/Ar(20{\%})$ gas mixing ratio. To improve the ferroelectric properties of PZT thin films after etching, the samples were annealed for 10 min at various temperatures in $O_{2}$ atmosphere. After $O_{2}$ annealing, the remanent polarization of the asdeposited films was $34.6{\mu}/cm^{2}$ and the sample annealed at 650, 550, and $450^{\circ}C$ was 32.8, 22.3, and $18.6{\mu}/cm^{2}$, respectively. PZT thin films with $O_{2}$ annealing at $450^{\circ}C$ retained $77{\%}$ of their original polarization at 106 cycles. Also as the annealing temperature increased, the fatigue properties improved. And the leakage current was decreased gradually and almost recovered to the as-deposited value after the annealing at $450^{\circ}C$.