metal-oxide-silicon-on-insulator 구조에서 고정 산화막 전하가 미치는 영향 조영득¹⁾, 김지홍²⁾, 조대형²⁾, 문병무²⁾, 고중혁¹⁾, 하재근¹⁾, 구상모¹⁾ ¹⁾광운대학교, ²⁾고려대학교 ## Effect of the fixed oxide charge on the metal-oxide-silicon-on-insulator structures Yeong-Deuk Jo¹⁾, Ji-Hong Kim²⁾, Dae-Hyung Cho²⁾, Byung-Moo Moon²⁾, Jung-Hyuk Koh¹⁾, Jae-Geun Ha¹⁾, and Sang-Mo Koo¹⁾ 1)Kwangwoon University, ²⁾Korea University Abstract: Metal-oxide-silicon-on-insulator (MOSOI) structures were fabricated to study the effect caused by reactive ion etching (RIE) and sacrificial oxidation process on silicon-on-insulator (SOI) layer. The MOSOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching treatment. The measured C-V curves were compared to the numerical results from 2-dimensional (2-D) simulations. The measurements revealed that the profile of C-V curves significantly changes depending on the SOI surface condition of the MOSOI capacitors. The shift in the measured C-V curves, due to the difference of the fixed oxide charge (Q_f) , together with the numerical simulation analysis and atomic force microscopy (AFM) analysis, allowed extracting the fixed oxide charges (Q_f) in the structures as well as 2-D carrier distribution profiles. Key Words: etch damage, interface states, C-V, Silvaco Atals, AFM