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40nm InGaAs HEMT’s with 65% Strained Channel
Fabricated with Damage-Free SiO,/SiN, Side-wall Gate
Process
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Abstract —Highly reproducible side-wall process for
the fabrication of the fine gate length as small as
40nm was developed. This process was utilized to
fabricate 40nm InGaAs HEMTs with the 65%
strained channel. With the usage of the dual
SiO, and SiN, dielectric layers and the proper
selection of the etching gas, the final gate length (Lg)
was insensitive to the process conditions such as the
dielectric over-etching time. From the microwave
measurement up to 40GHz, extrapolated fT and fmax
as high as 371 and 345 GHz were obtained,
respectively. We believe that the developed side-wall
process would be directly applicable to finer gate
fabrication, if the initial line length is lessened below
the 100nm range.

Index Terms—InP, HEMT, InGaAs/InAlAs, nano-
scale, side-wall, current-gain cutoff frequency (fT)

I. INTRODUCTION

An InGaAs/InAlAs HEMT’s on InP substrate has
shown the excellent frequency characteristics due to the

enhanced electron’s mobility and the increased

conduction band discontinuity (AE,) [1][2][3]. Recently,
the device

microwave characteristics have been
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improved by reducing the gate length (L) to nano-meter
scale and adapting the highly strained InxGaAs channel
(x>0.53) [4][5]. According to the Fusitzu group’s work
(6], fr of 396GHz with L of 25nm and the strained
Iny 7GaAs channel was reported.

Conventional e-beam lithography machine with an
acceleration voltage of 30 kV and a Tunsten (W)
filament would offer to the range of about 100nm. To
reduce the device gate length (L,) to the sub-100nm
scale, the state of the art e-beam lithography machines
with high resolution will be needed. The side-wall
process has been widely used to resolve these
lithography limitations, especially in CMOS device
fabrications [7]. The fine pattern is obtained through the
formation of the side-wall spacer which results from the
sequence of dielectric etch, dielectric re-deposition and
dielectric etch-back. Among the various process
parameters, a percentage of over-etch in the etch-back
step affects mainly to the shape of the final side-wall
spacer. Due to the step coverage problem in the dielectric
re-deposition, the exact control of the over-etch time is
really impossible, and thus the ambiguity of the shape of
the final side-wall spacer would be problematic in this
process.

In this paper, highly reproducible side-wall gate
process was developed. The ambiguity of the shape for
the final side-wall spacer was resolved through the use
of SiN,/SiO, dual dielectrics and the proper selection of
etching gas. The 40nm side-wall gate InAlAs/InGaAs/
InP HEMT’s on InP substrate with the strained
Ing¢sGaAs channel was fabricated and the device
showed G, max fr, and fi, of 1.7 S/mm, 371 GHz and
345 GHz.
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11. A NovEiL SiN,/Si0O; SIDE-WALL GATE
PROCESS

Figure 1-(a) shows the procedure of a conventional
side-wall gate process which includes first line definition,
dielectric re-deposition and dielectric etch-back. The
final gate length (L,) is lessened by the dimension of the

o0 SF61A=10155cun@sm~,50me‘ﬁ
800{ -0~ CSiO, .
700] ® BSIN,
600 -4 &
<
£ 5004
400 ®
S 300
i
2004
100 4
0 T A T Y T T ¥
2 25 30 35 40
Etch time [sec]

Fig 2

Si0, and SiN, etch results by SF; based plasma.
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Fig 3 The over-all SEM Photograph of Sidewall process

two side-wall spacers. Because the shape of the final
side-wall spacer is easily changed by a time of dielectric
etch-back, the fine control of the final gate length (L,) is
very difficult.

Figure 1-(b) represents the newly developed side-wall
process, which utilizes two dielectric layers of SiN, and
$i0s, and two plasma gas sources for the purpose of the
dielectric dry etch. After the re-deposited Si0, was
etched by the CF, based plasma, the residual SiN, was
etched by the SF, based plasma. Figure 2 shows typical
etch characteristics for PECVD grown Si0, and SiN, by
SF, based plasma. Here, the SF¢ based plasma has a high
etch selectivity for the Si0, layer, which prevents the
shape of the final side-wall spacer from being lessened
ensure  the

during over-etch. This feature does

reproducibility of the proposed side-wall gate process.
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The actual etch selectivity for the oxide layer by the SF,
plasma was over 20 in this process.

Figure 3 shows the over-all SEM photograph of the
proposed side-wall gate process in detail. The final gate
length after the etch-back step was 40nm. In addition,
the SF¢ gas has an advantage of low plasma-induced
damage during the etch process, which can offer enough
over-etch time without any degradation of the carrier
transport property.

II1. 40nm INGAAS HEMTS USING SIDEWALL
PROCESS

InGaAs/InAlAs HEMT
layers with InP etch-stopper were grown by solid-source

Pseudomorphic epitaxial
molecular beam epitaxy on 3 inch semi-insulating InP
substrate. The detailed structures are shown in fig. 4. A
10nm strained Ingq;GaAs channel was adopted to
enhance the carrier transport property, and a 4nm
undoped InP layer acts as an etch-stopper for gate recess
process. The results of Hall measurement indicated a 2-
DEG (Two Dimensional Electron Gas) density of 3 X
102 /cm® with a low field Hall mobility of 10,300
em?*/V-sec at room temperature.

Device fabrication begined with mesa isolation down
to the InAlAs buffer layer by wet chemical etching using
a H;PO, : H,0, : H,O mixture. For the S/D ohmic
contact, an image reversal photo-resist was used to
achieve a well-defined over-hang profile for a lift-off,
and they were formed by Ni/Ge/Au metallization
through e-beam evaporation and alloyed in H, ambient
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Fig 4 Cross-section of the InGaAs/InAlAs HEMT’s.

after the R-PECVD (Remote PECVD) grown 100 nm
SiN, pre-passivation. Figure 5 shows the optimization
results of S/D ohmic contact for various metal systems.
The ohmic metal system of Ni/Ge/Au(10/45/160nm)
lowered drastically the contact resistance (R.) below
0.035Q-mm, which is acceptable for the sub-100nm gate
device. The developed SiN,/Si10; side-wall process was
applied to define 40nm gate foot, and then selective gate
recess etching using a citric acid and H,O, mixture was
done. The sputtered Tusten (W) metal was used
effectively to fill a fine gate foot line with high aspect
ratio. Second T-gate of 0.2um was defined with
PMMA/P(MMA-MAA)/PMMA tri-layer resist system to
improve lift-off well, and the schottky gate of Ti/Au
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Fig 5 Contact resistance (R.) versus the alloy temperature for
the various Ni/Ge/Au structures.
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Fig 6 The over-all HEMT fabrication procedures.
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(50/350nm) was
fabrication procedures were summarized in fig. 6. [8]

evaporated. The overall device

II1. Dc AND MICROWAVE CHACTERISTICS

Two types of 40nm InGaAs HEMT devices were
fabricated. One is an InP-schottky barrier device and the
other is an InAlAs-schottky barrier device by means of
Ar plasma RIE etch. The fabricated 40 nm HEMT’s were
characterized through on-wafer measurement for DC and
microwave performance. The output I-V transfer curves
for two types were plotted in fig. 7. The 40nm HEMT’s
with InP schottky barrier exhibit Vy, of -0.6V and Gy, ax
of 1.6S/mm. The 40nm HEMT’s with InAlAs schottky
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Fig 7 Typcial DC transfer curve I-V characteristics of the
40nm InGaAs HEMT’s. A device with InAlAs schottky barrier
show that drain operating region would be more increased than
that with InP schottky barrier.

barrier show somewhat higher Gy, . of 1.78/mm and
lowér Vi, of -0.45V due to the etching of InP etch-
stopper by Ar plasma.

Figure 8 shows the results of reverse and forward
schottky-gate characteristics for two types. Because InP
layer has a low schottky barrier height (SBH) of about +
0.35¢V compared with Ings;AlAs layer with SBH of
about + 0.6 eV, the similar behavior in the off-state
breakdown characteristics was seen. These also explain
an increase of forward turn-on voltage for an InAlAs
schottky device.

The small signal scattering parameters (S-parameters)
of 2X50um InGaAs HEMT’s were measured using on-
wafer probing and 8510C network analyzer (1~40GHz).
Shown in fig. 8 were the plots of H,, and unilateral gain
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Fig 8 The Schottky Gate Characteristics. A device with
InAlAs schottky shows BVgp of — 4.0V and gate turn-on
voltage (V,,) of + 0.45V.
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Fig 9 Current gain Hy; and Unilateral power gain (U ,,.)
versus measured frequency for the 40nm InGaAs HEMT’s
biased near the peak transconductance (G, max)
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(Unax) versus the frequency biased near peak G max
region. Extrapolating Hy; and U, to zero gain with -6
dB/octave slopes, an estimation of 371 GHz and 345
GHz were made to fr and f,... We believe that these
results to be one of the excellent sub-100nm InGaAs
HEMT’s with a little short channel effect.

I'V. CONCLUSION

We have presented a highly reproducible and damage-
free technology for the formation of 40nm T-gate
structure. The fine gate foot with reproducibility could
be defined by the usage of the dual SiN, and SiO,
dielectric layers and proper selection of the etching gas.
Finally, we have used the developed side-wall process to
fabricate 40nm gate-length InGaAs HEMT’s with the
65% strained channel, which showed G, o 0f 1.7 S/mm,
fr of 371 GHz, and f,, of 345 GHz This highly
reproducible and damage-free side-wall technology will
be directly applicable to finer gate foot definition, if the
first line length is lessened below 100nm scale.
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