• Title/Summary/Keyword: ester

Search Result 2,593, Processing Time 0.034 seconds

Comparison of the content of bioactive substances and antioxidative activity between conventionally and organically cultivated brown rice (Oryza sativa L.) (관행 및 유기재배 현미의 생리활성 성분의 함량 및 항산화활성 비교)

  • Kim, Gee An;Cho, Jeong-Yong;Lee, You Seok;Lee, Hyoung Jae;Jeong, Hang Yeon;Lee, Yu Geon;Moon, Jae-Hak
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.334-342
    • /
    • 2017
  • The content of bioactive substances and antioxidative activity in conventionally grown brown rice (CGBR) and organically grown brown rice (OGBR) were compared. Minerals (mg/100 g) such as magnesium (OGBR, $168.59{\pm}2.62$; CGBR, $121.43{\pm}2.22$), copper (OGBR, $0.50{\pm}0.06$; CGBR, $0.41{\pm}0.05$), and manganese (OGBR, $4.70{\pm}0.04$; CGBR, $2.49{\pm}0.02$) were higher in OGBR than in CGBR (p<0.05). In addition, levels of (${\mu}g/100g$) vitamins B2 (OGBR, $27.22{\pm}2.56$; CGBR, $22.12{\pm}2.24$) and B6 (OGBR, $46.32{\pm}2.66$; CGBR, $39.91{\pm}3.32$) were higher in OGBR than in CGBR (p<0.05). The contents (mg/100 g) of ${\beta}$-sitosterol (OGBR, $27.40{\pm}2.79$; CGBR, $24.75{\pm}1.06$), total phenolic (OGBR, $6.72{\pm}0.02$; CGBR, $6.64{\pm}0.02$), and ferulic acid (OGBR, $1.75{\pm}0.45$; CGBR, $1.11{\pm}0.14$) as well as the antioxidative activity (OGBR, $53.09{\pm}1.90%$; CGBR, $48.29{\pm}3.38%$) evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging assay were higher in OGBR than in CGBR, although no significant differences between samples were observed. In comparison to the control group, brown rice samples significantly inhibited cholesteryl ester hydroperoxide formation in rat plasma subjected to copper ion-induced lipid peroxidation. The inhibitory effect of OGBR was higher than that of CGBR. These results indicate that OGBR showed higher levels of bioactive substances and enhanced antioxidative activity than CGBR, although the differences were not statistically significant.

Impacts of Soil Type on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 유형에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1164-1168
    • /
    • 2011
  • This study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in soils (6 sites for immatured paddy, 9 sites for normal paddy, and 5 sites for sandy paddy) in Gyeongnam Province. The soil microbial biomass carbon content in normal and sandy paddy were 1,235 and $441mg\;kg^{-1}$, respectively, showing the soil microbial biomass carbon content in normal paddy was higher than that in sandy paddy. The soil organic matter contents $33g\;kg^{-1}$ of immatured and normal paddy were higher than sandy paddy $18g\;kg^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in normal paddy were significantly higher than those in sandy paddy (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation.

Kinetic Study on the Oxidation Reaction of Alcohols by Cr(VI)-Quinoline Compound (크롬(VI)-퀴놀린 화합물에 의한 알코올류의 산화반응에 대한 반응속도론적 연구)

  • Park, Young-Cho;Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.109-114
    • /
    • 2021
  • Cr(VI)-quinoline compound[(C9H7NH)2Cr2O7] was synthesized by the reaction between of quinoline and chromium(VI) trioxide, and structure was FT-IR, elemental analysis. The oxidation ability of benzyl alcohol greatly depends upon the dielectric constant of the used organic solvent, where carbon tetrachloride was worst and N,N'-dimethylformamide was best solvent. Noticeably, in N,N'-dimethylformamide solvent, Cr(VI)-quinoline compound oxidized substituted benzyl alcohols. The Hammett reaction constant(ρ)=-0.69(303K). As a resuit, Cr(VI)-quinoline compound was found as efficicent oxidizing agent that converted benzyl alcohol, allyl alcohol, primary alcohol and secondary alcohols to the corresponding aldehydes or ketones. Cr(VI)-quinoline compound was selective oxidizing agent of benzyl alcohol, allyl alcohol and primary alcohol in the presence of secondary alcohol ones.

Biological Properties of Propolis Isolated from Honeybees (프로폴리스의 생물학적 특성)

  • Kim, Sung-Kuk;Woo, Soon-Ok;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.686-697
    • /
    • 2021
  • Propolis is a resinous substance produced by honeybees, which they use to protect their hives. Honeybees produce propolis by mixing exudates from the various trees and plants with saliva and beeswax. It has been used since around 300 B.C. as a folk medicine to cure wounds. Propolis contains many physiologically active components, such as flavonoids, phenolic compounds, and beeswax. Because of its functional components, propolis has a wide spectrum of biological applications. The compounds in propolis and its biological activity can vary according to the location of nectar source and extraction method. Propolis is most commonly known for its anti-microorganism activity against bacteria, viruses, and fungi. Artepillin C and caffeic acid phenethyl ester (CAPE) have been identified as regulatory compounds that reduce inflammation and exert immunosuppressive reactions on T lymphocytes. Through its anti-inflammatory activity, propolis exhibits anti-tumor activity, including the inhibition of cancer cell proliferation, the blocking of tumor signaling cascades, and antiangiogenesis. However, for the more apply of propolis its analysis of nectar source, identifying of propolis compound, the molecular mechanism of propolis and the investigation of compounds synergistic effects are essential. In this study, we described the physiological activity of propolis isolated from honeybees.

Characteristics of Phthalate Esters-exposed Boar Sperm during Boar Semen Storage (돼지 정액을 보관하는 동안 phthalate esters에 노출된 정자의 특성)

  • Lee, A-Sung;Lee, Sang-Hee;Lee, Seunghyung;Yang, Boo-Keun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.395-401
    • /
    • 2019
  • Phthalate is a chemical endocrine disrupter and interfere with the action of hormones, estrogens, androgens and thyroid hormones. It also affect cardiovascular, metabolic, immune and reproductive system in the human and animals. Curcumin is antioxidant, anti-inflammatory activity and -cancer properties in the human. We studied whether phthalates damage viability, mitochondrial activity and membrane integrity of sperm in boar semen. We also treated curcumin with/without phthalates in the boar semen. Fresh boar semen was treated with phthalates and/or curcumin for examining sperm characteristics. Sperm characteristics, sperm motility, viability, mitochondrial activity, and membrane integrity were determined during storage of boar semen. Sperm motility and viability in dose-dependent manner decreased by di-n-butyl phthalate (DBP), mono-n-butyl phthalate (MBP) and di-2-ethylhexyl phthalate (DEHP, p<0.05). Phthalates also decreased mitochondrial activity and membrane integrity of sperm (p<0.05). However, sperm motility and viability were higher than untreated-curcumin when DBP, MBP and DEHP treated with a curcumin in boar semen (p<0.05). Mitochondrial activity and membrane integrity of sperm were higher in DBP- and MBP-treated semen with curcumin (p<0.05). In conclusion, phthalates can damage sperm viability and quality during the boar semen storage, and curcumin may protect the boar sperms from phthalates during storage term.

Preparation of Waste Cooking Oil-based Biodiesel Using Microwave Energy: Optimization by Box-Behnken Design Model (마이크로웨이브 에너지를 이용한 폐식용유 원료 바이오디젤의 제조: Box-Behnken 설계를 이용한 최적화)

  • Lee, Seung Bum;Jang, Hyun Sik;Yoo, Bong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.746-752
    • /
    • 2018
  • In this study, an optimized process for the waste cooking oil based biodiesel production using microwave energy was designed by using Box-Behnken design model. The process variables were chosen as a mole ratio of the methanol to oil, microwave power, and reaction time. Fatty acid methyl ester (FAME) content was then measured. Through the results of basic experiments, the range of optimum operation variables for the Box-Behnken design model, such as the methanol/oil mole ratio and reaction time, were set as between 8 to 10 and between 4 to 6 min, respectively. Ranges of the microwave power were set as from 8 to 12 W/g for 1.30 mg of KOH/g, acid value, while from 10 to 14 W/g for 2.00 mg of KOH/g, acid value. The optimum methanol/oil mole ratio, microwave power, and reaction time were reduced to 7.58, 10.26 W/g, and 5.1 min, respectively, for 1.30 mg KOH/g of acid value. Also, the optimum methanol/oil mole ratio, microwave power, and reaction time were 7.78, 12.18 W/g, and 5.1 min, respectively, for 2.00 mg KOH/g of acid value. Predicted FAME contents were 98.4% and 96.3%, with error rates of less than 0.3%. Therefore, when the optimized process of biodiesel production using microwave energy was applied to the Box-Behnken design model, the low error rate could be obtained.

Effects of Turmeric (Curcuma longa L.) on Lipid Component and Protein Concentration in Dyslipidemic Rats (울금(Curcuma longa L.) 첨가 식이가 이상지질혈증 흰쥐의 지질성분 및 단백질 농도에 미치는 영향)

  • Oh, Da-Young;Kang, Dong-Soo;Lee, Young-Geun;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.47-58
    • /
    • 2019
  • This study aimed to investigate the improvement effect of turmeric (Curcuma longa L.) on the lipid component, protein and electrolyte concentration in dyslipidemic rats. Sprague-Dawley rats (24 male) were divided into four groups, namely the ND (normal-nondyslipidemic diet), NT (normal-nondyslipidemic diet+5% turmeric), DD (control-dyslipidemic diet), and DT groups (dyslipidemic diet+5% turmeric). Rats were sacrificed at the end of 5 weeks after experiment diet. In this study, turmeric diet (NT, DT) groups in lipid composition as evidenced from the significantly reduction of serum total cholesterol, low density lipoprotein-cholesterol (LDL-cholesterol), atherosclerotic index (AI), cardiac risk factor (CRF), triglyceride (TG), phospholipid (PL), free cholesterol, cholesteryl ester, blood glucose and non esterified fatty acid (NEFA), and elevation of high density lipoprotein-cholesterol (HDL-cholesterol) (p<0.05). The serum globulin concentration was significantly decreased (p<0.05), and the albumin concentrations were increased in turmeric diet than dyslipidemic rats. Concentrations of sodium (Na) and chlorine (Cl) in sera were lower in the DT group than DD group. Concentrations of total calcium (T-Ca), phosphorus (Pi) and potassium (K) in sera were higher in the ND, NT and DT groups than DD group. Therefore, it was concluded that the 5% turmeric diet used in the condition of this study had a beneficial effect on dyslipidemia.

Quality Properties of Herbal Wine containing Schizandra chinensis and Lycium chinense according to Extract Concentration (추출농도에 따른 오미자 및 구기자를 첨가한 한방약술의 품질특성)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.341-347
    • /
    • 2019
  • In this study, the following is the result of measuring the quality characteristics of herbal wine and the active inhibition of Glutathione S-transferase in order to measure the release of physiological active substances according to the concentration of extracts. The pH level of herbal wine was 4.4, up from 3.9 before fermentation. These changes are attributed to fermentation and organic acids during alcoholic fermentation. The acidity of herbal wine was 0.55%, about six times higher than the pre-fermentation control of 0.09%. These results show that organic acids are used for flavor formation, ether, in combination with alcohol. The inhibitory activity of glutathione S-transferase were $5.1{\pm}0.31$ in herbal wine 15%, $6.5{\pm}0.6$ in herbal wine 20%, $7.6{\pm}0.6$ in herbal wine 25%, $8.4{\pm}0.2$ in herbal wine 30% and $9.7{\pm}0.7$ in herbal wine 35%. As the extract concentration was increased the inhibitory activity of glutathione S-transferase were significantly increased (<0.05).

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Suppressive Impact of Ginsenoside-Rg2 on Catecholamine Secretion from the Rat Adrenal Medulla

  • Ha, Kang-Su;Kim, Ki-Hwan;Lim, Hyo-Jeong;Ki, Young-Jae;Koh, Young-Youp;Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.86-98
    • /
    • 2021
  • This study was designed to characterize the effect of ginsenoside-Rg2 (Rg2), one of panaxatriol saponins isolated from Korean ginseng root, on the release of catecholamines (CA) in the perfused model of the rat adrenal medulla, and also to establish its mechanism of action. Rg2 (3~30 µM), administered into an adrenal vein for 90 min, depressed acetylcholine (ACh)-induced CA secretion in a dose- and time-dependent manner. Rg2 also time-dependently inhibited the CA secretion induced by 3-(m-chloro-phenyl-carbamoyl-oxy)-2-butynyltrimethyl ammonium chloride (McN-A-343), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), and angiotensin II (Ang II). Also, during perfusion of Rg2, the CA secretion induced by high K+, veratridine, cyclopiazonic acid, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644) depressed, respectively. In the simultaneous presence of Rg2 and Nω-nitro-L-arginine methyl ester hydrochloride ʟ-NAME), the CA secretion induced by ACh, Ang II, Bay-K-8644 and veratridine was restored nearly to the extent of their corresponding control level, respectively, compared to those of inhibitory effects of Rg2-treatment alone. Virtually, NO release in adrenal medulla following perfusion of Rg2 was significantly enhanced in comparison to the corresponding spontaneous release. Also, in the coexistence of Rg2 and fimasartan, ACh-induced CA secretion was markedly diminished compared to the inhibitory effect of fimasartan-treated alone. Collectively, these results demonstrated that Rg2 suppressed the CA secretion induced by activation of cholinergic as well as angiotensinergic receptors from the perfused model of the rat adrenal gland. This Rg2-induced inhibitory effect seems to be exerted by reducing both influx of Na+ and Ca2+ through their ionic channels into the adrenomedullary cells as well as by suppressing Ca2+ release from the cytoplasmic calcium store, at least through the elevated NO release by activation of NO synthase, which is associated to the blockade of neuronal cholinergic and AT1-receptors. Based on these results, the ingestion of Rg2 may be helpful to alleviate or prevent the cardiovascular diseases, via reduction of CA release in adrenal medulla and consequent decreased CA level in circulation.