• Title/Summary/Keyword: error estimate

Search Result 2,291, Processing Time 0.034 seconds

CWT-Based Method for Identifying the Location of the Impact Source in Buried Pipes (연속웨이브렛 변환을 이용한 충격음 위치 규명)

  • Kim, Eui-Youl;Kim, Min-Su;Lee, Sang-Kwon;Koh, Jae-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1555-1565
    • /
    • 2010
  • This paper presents a new method for indentifying the location of impact source in a buried duct. In a gas pipeline, the problem of leakage occurs due to the mechanical load exerted by construction equipment. Such leakage can cause catastrophic disasters in gas supply industries. Generally, the cross-correlation method has been used for indentifying the location of impact source in a pipeline. Since this method involves the use of the dispersive acoustic wave, it derives an amount of error in process of estimating the time delay between acoustic sensors. The object of this paper is to estimate the time delay in the arrival of the direct wave by using the wavelet transform instead of the dispersive wave. The wavelet transform based method gives more accurate estimates of the impact location than the cross-correlation method does. This method is successfully used to identify the location of impact force in an actual buried gas duct.

Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory (평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링)

  • Jung, Eui-Guk;Boo, Joon-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1079-1085
    • /
    • 2010
  • A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

State Equation Modeling and the Optimum Control of a Variable-Speed Refrigeration System (가변속 냉동시스템의 상태방정식 모델링과 최적제어)

  • Lee, Dan-Bi;Jeong, Seok-Kwon;Jung, Young-Mi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.579-587
    • /
    • 2014
  • This paper deals with precise analytical state equation modeling of a variable speed refrigeration system (VSRS) for optimum control in state space. The VSRS is described as multi-input and multi-output (MIMO) system, which has two controlled variables and two control inputs. First, the Navier-Stokes equation and mass flow rate were applied to each component of the basic refrigeration cycle to build a dynamic model. The dynamic model, represented by a differential equation, was transformed into the state equation formula. Next, a full-order state observer was built to estimate all of the state variables to compose an optimum control system. Then, an optimum controller was designed to minimize an evaluation function that has input energy and control error. Finally, simulations and experiments were conducted to verify the validity of the proposed modeling and designed optimum controller to regulate target temperature and superheat in a 1RT oil cooler system. The results show that the proposed method, state equation modeling and optimum control, is efficient to ensure optimal control performance of the VSRS.

Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering (GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상)

  • Oh, SangYeob
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.35-39
    • /
    • 2020
  • DNN error is small compared to the conventional speech recognition system, DNN is difficult to parallel training, often the amount of calculations, and requires a large amount of data obtained. In this paper, we generate a phoneme unit to estimate the GMM parameters with each phoneme model parameters from the GMM to solve the problem efficiently. And it suggests ways to improve performance through clustering for a specific vocabulary to effectively apply them. To this end, using three types of word speech database was to have a DB build vocabulary model, the noise processing to extract feature with Warner filters were used in the speech recognition experiments. Results using the proposed method showed a 97.9% recognition rate in speech recognition. In this paper, additional studies are needed to improve the problems of improved over fitting.

Runtime Prediction Based on Workload-Aware Clustering (병렬 프로그램 로그 군집화 기반 작업 실행 시간 예측모형 연구)

  • Kim, Eunhye;Park, Ju-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.56-63
    • /
    • 2015
  • Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed method for runtime prediction of parallel applications consists of three main phases. First, a feature selection based on factor analysis is performed to identify important input features. Then, it performs a clustering analysis of history data based on self-organizing map which is followed by hierarchical clustering for finding the clustering boundaries from the weight vectors. Finally, prediction models are constructed using support vector regression with the clustered workload data. Multiple prediction models for each clustered data pattern can reduce the error rate compared with a single model for the whole data pattern. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.

A Study on the Socio-economic Characteristics of the Angler Population and the Estimation of A Fishing Frequency Function (유어낚시인구의 사회경제학적 특성과 출조빈도함수의 추정에 관한 연구)

  • Park Cheol-Hyung
    • The Journal of Fisheries Business Administration
    • /
    • v.36 no.1 s.67
    • /
    • pp.81-101
    • /
    • 2005
  • This article is to estimate the fishing frequency function in Korean recreational fishery with respect to socio-economic characteristics of anglers. First, the study described the characteristics of the entire angler population on the view points of 9 socio-economic variables. And then, the study divided the total angler population into three groups of in-land, sea, and mixed angler populations in order to investigate the differences in their characteristics. The study could confirm the existence of differences in regions, size of regions, and educational levels between the in - land and the sea angler populations by testing heterogeneity in the frequency table. The fishing frequency function is estimated using Poisson regression model in order to accomodate the count data(non-negative discrete random variable) aspects of the fishing frequency. However, the model specification error is found due to overdispersion of data. The model exhibits the lack of goodness of fit. The negative binomial regression model is adopted to cure the overdispersion of the data as an alternative estimation methodology. Finally, the study can confirm overdispersion does not exist in the model any more and the goodness of fit improved significantly to the reasonable level. The results of estimation of fishing frequency population modeled by the negative binomial regression models are following. The three variables of region, sex, and education have effects on the decision making process of fishing frequency in the case of in-land recreation fishery. On the other hand, the three variables of sex, age, and marriage status do the same job in the case of sea angler population. Among the left-over variables, both income and use of Internet variables now affect on the process in mixed angler population. Finally, the results of whole angler population show that all of the previous variables are proven to be statistically significant due to the summation of data with all three sub-groups of angler population.

  • PDF

Indoor Positioning Using the WLAN-based Wavelet and Neural Network (WLAN 기반의 웨이블릿과 신경망을 이용한 위치인식 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.38-47
    • /
    • 2008
  • The most commonly used location recognition system is the GPS-based approach. However, the GPS is inefficient for an indoor or urban area where high buildings shield the satellite signals. To overcome this problem, this paper propose the indoor positioning method using wavelet and neural network. The basic idea of proposed method is estimated the location using the received signal strength from wireless APs installed in the indoor environment. Because of the received signal strength of wireless radio signal is fluctuated by the environment factors, a feature that is strength of signal noise and error and express the time and frequency domain is need. Therefore, this paper is used the wavelet coefficient as the feature. And the neural network is used for estimate the location. The experiment results indicate 94.6% an location recognition rate.

Pose Estimation Method Using Sensor Fusion based on Extended Kalman Filter (센서 결합을 이용한 확장 칼만 필터 기반 자세 추정 방법)

  • Yun, Inyong;Shim, Jaeryong;Kim, Joongkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • In this paper, we propose the method of designing an extended kalman filter in order to accurately measure the position of the spatial-phase system using sensor fusion. We use the quaternion as a state variable in expressing the attitude of an object. Then, the attitude of rigid body can be calculated from the accelerometer and magnetometer by applying the Gauss-Newton method. We estimate the changes of state by using the measurements obtained from the gyroscope, the quaternion, and the vision informations by ARVR_SDK. To increase the accuracy of estimation, we designed and implemented the extended kalman filter, which showed excellent ability to adjust and compensate the sensor error. As a result, we could experimentally demonstrate that the reliability of the attitude estimation value can be significantly increased.

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

Damage Detection in Shear Building Based on Genetic Algorithm Using Flexibility Matrix (유연도 행렬을 이용한 전단빌딩의 유전자 알고리즘 기반 손상추정)

  • Na, Chae-Kuk;Kim, Sun-Pil;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • Stiffness estimation of a shear building due to local damages is usually achieved though structural analysis based on the assumed material properties and idealized numerical modeling of structure. Conventional numerical modeling, however, frequently causes an inevitable error in the structural response and this makes it difficult to exactly predict the damage state in structure. To solve this problem, this paper introduces a damage detection technique for shear building using genetic algorithm. The introduced algorithm evaluates the damage in structure using a flexibility matrix since the flexibility matrix can exactly be obtained from the field test in spite of using a few lower dynamic modes of structure. The introduced algorithm is expected to be more effectively used in damage detection of structures rather than conventional method using the stiffness matrix. Moreover, even in cases when an accurate measurement of structural stiffness cannot be expected, the proposed technique makes it possible to estimate the absolute change in stiffness of the structure on the basis of genetic algorithm. The validity of the proposed technique is demonstrated though numerical analysis using OPENSEES.