• Title/Summary/Keyword: erosion resistance

Search Result 250, Processing Time 0.024 seconds

A Study on Solid Particle Erosion Characteristics of Surface Treated 12wt%Cr Steel for USC Power Plant (USC 화력발전소용 12wt%Cr강의 표면처리에 따른 고체입자침식특성에 관한 연구)

  • 엄기원;이선호;이의열
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.324-326
    • /
    • 2004
  • l2wt%Cr Steel has been applied on turbine bucket and nozzle partition material of power plant. Turbine bucket and nozzle get damaged by solid particle within steam, therefore they are protected by surface treatments such as ion nitriding, boriding and chrome carbide HVOF spray coating. In this study, solid particle erosion(SPE) characteristics after these surface treatments are examined at operating temperature 540$^{\circ}C$ and 590$^{\circ}C$ of fossil power plant and the mechanism of damage was studied. Erosion of 12wt%Cr steel is originated by micro cutting and that of boriding and chrome carbide HVOF spray is originated by these mechanism - repeating collision, crack initiation and propagation. As the results of SPE test at 540$^{\circ}C$ and 30$^{\circ}$ impact angle that is the most commonly occurred in power plant, Boriding had the best SPE -resistance property, Cr$_2$C$_3$-25(Ni20Cr) HVOF spayed and ion nitrided samples were also better than bare metals(l2wt%Cr Steels). At 590$^{\circ}C$ and 30$^{\circ}$ impact angle, Boriding had also the most superior characteristic and HVOF spay sample was better than bare metal.

  • PDF

Thermal Spray Coating Layer for Improvement of Erosion and Corrosion Resistance Applicable to Large Sized High Speed Ship's Rudder (대형 고속 선박용 러더의 내침식, 부식 특성 향상을 위한 용사 코팅막)

  • Lee, Yu-Song;Heo, Seong-Hyeon;Kim, Jin-Hong;Kim, Yeo-Jung;Bae, Il-Yong;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.196-197
    • /
    • 2011
  • Rudder, one of the most important component in the marine vessel, is now being decreased life time to serve due to cavitation erosion, vortex current, high flow speed suffer from ship speed going up dramatically. In this study, 10 kinds of thermal spray coating materials(2 of Zn alloy series, 3 of Al alloy series, 3 of Cu alloy series, 2 of STS alloy series) are chosen to apply on specimens and analyze micro structure, metallic composition, properties(porosity, oxidation) by using visual observation, XRD, EDX etc.. Additionally, to refine the characteristic of corrosion endurance for thermal spray coating layer, compared with thermal spray process and 5 kinds of heavy duty painting and AC paint (Anti-Corrosion Paint). Based on above mentioned experimental results, a priority of all coated specimens on corrosion-erosion endurances finalized and summarized there by desirable composition and process of thermal sprayed material properly.

  • PDF

Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube (용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성)

  • Park, Il-Cho;Han, Min-Su
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.

A Study of Thermoelectric Effect in Resistance Spot Welding of Aluminium Alloy (알루미늄 합금의 저항점용접에서의 열전 효과에 대한 연구)

  • ;K. T. Rie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.10-19
    • /
    • 1998
  • The erosion of electrode in spot welding of aluminium alloy by direct current is dependent on the electric polarity. The positive electrode is much more eroded than the negative one. To explain this phenomenon, Peltier effect has been generally accepted as a unique theory. In this study Peltier effect was evaluated by calculations on the basis of some references and experiments. The difference of heat generated by Peltier effect on both electrode surfaces was, however, only 4% of total heat generated during wel- ding. Because of insufficient explanation, Kohler theory, which is mainly affected by thin oxide film, was introduced. A theoretical calculation showed 17% of the temperature difference between the positive and negative electrode, in case "surface voltage" resulted from oxide film was 30% of total contact voltage. This revealed that the erosion of electrode could be more affected by Kohler theory than effect.an effect.

  • PDF

Process Characteristics by Pattern Size in CMP Process of BLT Films (BLT박막의 화학적기계적연마 공정시 패턴 크기에 따른 공정 특성)

  • Shin, Sang-Hun;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.107-108
    • /
    • 2006
  • In this work, we first applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. $Bi_{3.25}La_{0.75}Ti_{3}O_{12}$ (BLT) ferroelectric film was fabricated by the sol-gel method. However, there have been serious problems in CMP in terms of repeatability and defects in patterned wafer. Especially, dishing & erosion defects increase the resistance because they decrease the interconnect section area, and ultimately reduce the lifetime of the semiconductor. Cross-sections of the wafer before and after CMP were examined by Scanning electron microscope(SEM). Process characteristics of non-dishing and erosion were investigated.

  • PDF

Selection of the Protective Coating Material for Blades of a Booster Fan in Desulfurization Plant (탈황설비용 부스터팬 블레이드의 코팅재질 선정에 관한 연구)

  • Jeong, Byeong-Yong;Yoo, Hoseon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • This study investigated the coating failure of the blades of booster fans for the 200 MW flue gas desulfurization plant. Although the arc sprayed SM8222 have been tried as blade coating materials aimed to apply as alternatives of Metcoloy(R)2 due to better corrosion-erosion resistance but it is failed. Bond strength tests and practical field experiences have demonstrated high velocity oxy-fuel(HVOF) coating method with Diamalloy 3004 as an alternative to Metcoloy(R) 2 arc spray.

  • PDF

Study of the Cavitation Erosion Mechanism and Erosion Resistance on the Dispersion Strengthened Stainless Steel by Solid Particle Collapse (고체입자충격에 의한 분산강화 스테인리스강의 침식메커니즘 및 침식저항성 고찰)

  • Han, Byeong-Seon;Hong, Seong-Mo;Lee, Min-Gu;Park, Jin-Ju;Lee, Sang-Hun;Lee, Chang-Gyu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.29-29
    • /
    • 2007
  • 본 연구에서는 분산강화 스테인리스강을 이용하여 케비테이션 발생 시 고체입자충격에 의한 재료의 침식메커니즘 및 침식저항성을 고찰하고자 하였다. 케비테이션 시간에 따른 침식저항성 측정결과, 기존재료에 비해 분산강화된 시편의 무게손실량이 낮았으며 침식잠복기가 짧고 침식속도가 낮아 전반적으로 우수한 저항성을 보였다. 이것은 침식표면의 손상메커니즘 관찰을 통해 확인할 수 있었다.

  • PDF

LASER CONSOLIDATION OF THE PLASMA COATED CHROME CARBIDE LAYER (레이저를 이용한 크롬카바이드 플라즈마 용사층의 특성향상)

  • An, Hui-Seok;Lee, Chang-Hui
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.203-212
    • /
    • 1997
  • This paper evaluated the feasibility of laser consolidation for improving the properties of the plasma coated layer, Further, the mechanim of the degradation sequence of the chrome carbide layer applied on the turbine blades was postualted. The laser consolidation could be successfully applied for improcing the surface properties of the plasma coated blade, if a proper condition was carefully chosen. The consolidated layer had erosion & corrosion resistance and vond strength superiro to those of the as-plasma coated layer. The properties of the consolidated layer were strongly dependent upon the degree of dilution, especially on the Fe pickup from the substrate. The degradation of the plasma coating layer was thought to be a reault of the repeating action of the solid particle erosion, corrosion penetration through the pores and oxide films formed along the interlayer surface and impact spalling.

  • PDF

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.