Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.5.535

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish  

Shabani, Khosro (Department of civil engineering, K. N. Toosi University of Technology)
Bahmani, Maysam (Department of Civil, Construction, and Environmental Engineering, University of Alabama)
Fatehi, Hadi (School of Engineering & Built Environment, Griffith University)
Chang, Ilhan (Department of Civil Systems Engineering, Ajou University)
Publication Information
Geomechanics and Engineering / v.29, no.5, 2022 , pp. 535-548 More about this Journal
Abstract
Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.
Keywords
biopolymer; sand; SEM; soil improvement; sustainable materials; unconfined compressive strength;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Kwon, Y.M., Ham, S.M, Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotech. Lett., 10(2), 106-112. https://doi.org/10.1680/jgele.19.00106.   DOI
2 Kamenetsky, R. and Rabinowitch, E. (1999), "Flowering response of Eremurus to post-harvest temperatures", Scientia horticulturae. 79(1-2), 75-86. https://doi.org/10.1016/S0304-4238(98)00181-2.   DOI
3 2020 in Review (2021), "Global Temperature Rankings", https://medialibrary.climatecentral.org/resources/2020-inreview-global-temperature-rankings.
4 Alsanad, A. (2011), Novel biopolymer treatment for wind induced soil erosion, Arizona State University.
5 ASTM (1991), "D. ASTM, 2166. Standard test method for unconfined compressive strength of cohesive soil, ed: ASTM International, 1991".
6 AlKarni, A. and ElKholy, S.M. (2012), "Improving geotechnical properties of dune sands through cement stabilization", J. Eng. Comput. Sci., 5(1), 1-19. http://dx.doi.org/10.13140/RG.2.1.4543.0245.   DOI
7 Khatami, H.R. and O'Kelly, B.C. (2013), "Improving mechanical properties of sand using biopolymers", Journal of Geotechnical and Geoenvironmental Engineering. 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.   DOI
8 Khorasani, M., Yousefi, A. and ERSHAD, L.A. (2006), "Viscoelastic Behaviour of Asphodel-Borax Gels", Iran J. Polymer Sci. Tech., 19(1), 3-11. https://www.sid.ir/en/journal/ViewPaper.aspx?id=61232.
9 Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z. and Siddique, R. (2021), "Clayey soil stabilization using alkali-activated volcanic ash and slag", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2021.08.012.   DOI
10 Mohanty, A.K., Misra, M. and Drzal, L. (2002), "Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world", J. Polymers Environ., 10(1), 19-26. https://doi.org/10.1023/A:1021013921916.   DOI
11 Pourfarzad, A., Najafi, M.B.H., Khodaparast, M.H.H. and Khayyat, M.H. (2015), "Serish inulin and wheat biopolymers interactions in model systems as a basis for understanding the impact of inulin on bread properties: a FTIR investigation", J. Fooe Sci. Tech., 52(12), 7964-7973. https://doi.org/10.1007/s13197-015-1939-4.   DOI
12 Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability. 8(3), 251. https://doi.org/10.3390/su8030251.   DOI
13 Kohkesh, N., Samanian, K. and Afsharpour, M. (2019), "Investigation of improvement of viscosity and viscidity of Eremurus (Serish) herbal adhesive, for paper restoration aim", Ganjine-ye Asnad., 29(2), 124-148. https://dx.doi.org/10.22034/ganj.2019.2363.   DOI
14 Jiang, C., Zhang, H., Zhang, Z. and Wang, D. (2019), "Model-based assessment soil loss by wind and water erosion in China's Loess Plateau: Dynamic change, conservation effectiveness, and strategies for sustainable restoration", Global Planetary Change, 172, 396-413. https://doi.org/10.1016/j.gloplacha.2018.11.002.   DOI
15 Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.   DOI
16 Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.   DOI
17 Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj2015-0475.   DOI
18 Chang, I., Im, J., Chung, M.K. and Cho, G.C. (2018), "Bovine casein as a new soil strengthening binder from diary wastes", Constr. Build. Mater., 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.   DOI
19 Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.   DOI
20 Pourfarzad, A., Najafi, M.B.H., Khodaparast, M.H.H., Khayyat, M.H. and Malekpour, A. (2014), "Fractionation of Eremurus spectabilis fructans by ethanol: Box-Behnken design and principal component analysis", Carbohydrate polymers, 106, 374-383. https://doi.org/10.1016/j.carbpol.2014.01.048.   DOI
21 Sadeghian, F., Jahandari, S., Haddad, A., Rasekh, H. and Li, J. (2021), "Effects of variations of voltage and pH value on the shear strength of soil and durability of different electrodes and piles during electrokinetic phenomenon", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2021.07.017.   DOI
22 Seo, S., Lee, M., Im, J., Kwon, Y.M., Chung, M.K., Cho, G.C. and Chang, I. (2021), "Site application of biopolymer-based soil treatment (BPST) for slope surface protection: in-situ wet-spraying method and strengthening effect verification", Constr. Build. Mater., 307, 124983. https://doi.org/10.1016/j.conbuildmat.2021.124983.   DOI
23 Shindell, D.T. (2015), "The social cost of atmospheric release", Climatic Change, 130(2), 313-326. https://doi.org/10.1007/s10584-015-1343-0.   DOI
24 Ghadir, P., Zamanian, M., Mahbubi-Motlagh, N., Saberian, M., Li, J. and Ranjbar, N. (2021), "Shear strength and life cycle assessment of volcanic ash-based geopolymer and cement stabilized soil: A comparative study", Transportation Geotech., 31, 100639. https://doi.org/10.1016/j.trgeo.2021.100639.   DOI
25 Li, C., Shi, J.G., Zhang, Y.P. and Zhang, C.Z. (2000), "Constituents of Eremurus chinensis", J. Natural Products, 63(5), 653-656. https://doi.org/10.1021/np9904915.   DOI
26 Davidovits, J. (2008), Geopolymer chemistry and applications, Geopolymer Institute
27 Fatehi, H., Abtahi, S.M., Hashemolhosseini, H. and Hejazi, S.M. (2018), "A novel study on using protein based biopolymers in soil strengthening", Constr. Build. Mater., 167 813-821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.   DOI
28 Fatehi, H., Bahmani, M. and Noorzad, A. (2019). "Strengthening of dune sand with sodium alginate biopolymer", Geo-Congress 2019: Soil Improvement. https://doi.org/10.1061/9780784482117.015.   DOI
29 Chen, R., Lee, I. and Zhang, L. (2015), "Biopolymer stabilization of mine tailings for dust control", J. Geotech. Geoenviron. Eng., 141(2), 04014100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001240.   DOI
30 Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ. Policy, 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.   DOI
31 Fatehi, H., Ong, D.E.L., Yu, J. and Chang, I. (2021), "Biopolymers as green binders for soil improvement in geotechnical applications: A review", Geosci., 11(7), 291. https://doi.org/10.3390/geosciences11070291.   DOI
32 Desert Features (2019), "Desert Features. https://pubs.usgs.gov/gip/deserts/features.".
33 ASTM (2005), "Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass", West Conshohocken: American Society for Testing & Materials. 2216.
34 Singh, S.P. and Das, R. (2019), "Geo-engineering properties of expansive soil treated with xanthan gum biopolymer", Geomech. Geoeng., 1-16. https://doi.org/10.1080/17486025.2019.1632495.   DOI
35 Gregory, J., AzariJafari, H., Vahidi, E., Guo, F., Ulm, F.-J. and Kirchain, R. (2021), "The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements", Proceedings of the National Academy of Sciences, 118(37). https://doi.org/10.1073/pnas.2021936118.   DOI
36 Eghtedarnejad, N. and Mansouri, H.R. (2016), "Building wooden panels glued with a combination of natural adhesive of tannin/Eremurus root (syrysh)", Eur. J. Wood Wood Products, 74(2), 269-272. https://doi.org/10.1007/s00107-015-0994-x.   DOI
37 Lim, T., Ellis, B.R. and Skerlos, S.J. (2019), "Mitigating CO2 emissions of concrete manufacturing through CO2-enabled binder reduction", Environ. Res. Lett., 14(11), 114014. https://iopscience.iop.org/article/10.1088/17489326/ab466e/meta.   DOI
38 Sofi, M., Van Deventer, J., Mendis, P. and Lukey, G. (2007), "Bond performance of reinforcing bars in inorganic polymer concrete (IPC)", J. Mater. Sci., 42(9), 3107-3116. https://doi.org/10.1007/s10853-006-0534-5.   DOI
39 Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-019-57135-x.   DOI
40 Van de Velde, K. and Kiekens, P. (2002), "Biopolymers: overview of several properties and consequences on their applications", Polymer Test., 21(4), 433-442. https://doi.org/10.1016/S0142-9418(01)00107-6.   DOI
41 Kwon, Y.M., Cho, G.C., Chung, M.K. and Chang, I. (2021), "Surface erosion behavior of biopolymer-treated river sand", Geomech. Eng., 25(1), 49-58. https://doi.org/10.12989/gae.2021.25.1.049.   DOI
42 Dashti, M., Zarif, K.H., Paryab, A. and Tavakoli, H. (2005), "Study of ecological requirements of foxtail lilly (Eremurus Spectabilis MB) in Khorassan", Iran J. Range Desert Res., 12(2), 153-165. https://www.sid.ir/en/journal/ViewPaper.aspx?ID=105126.
43 Chang, I., Lee, M. and Cho, G.C. (2019), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering", Energies, 12(13), 2567. https://doi.org/10.3390/en12132567.   DOI
44 Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.   DOI
45 Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.   DOI
46 Wagner, L.E. (2013), "A history of wind erosion prediction models in the United States Department of Agriculture: The Wind Erosion Prediction System (WEPS)", Aeolian Res., 10, 9-24. https://doi.org/10.1016/j.aeolia.2012.10.001.   DOI
47 Bahmani, M., Noorzad, A., Hamedi, J. and Sali, F. (2017), "The role of bacillus pasteurii on the change of parameters of sands according to temperatur compresion and wind erosion resistance", J. CleanWAS. 1(2), 1-5. https://doi.org/10.26480/jcleanwas.02.2017.01.05.   DOI
48 Ayeldeen, M., Negm, A., El-Sawwaf, M. and Kitazume, M. (2017), "Enhancing mechanical behaviors of collapsible soil using two biopolymers", J. Rock Mech. Geotech. Eng., 9(2), 329-339. https://doi.org/10.1016/j.jrmge.2016.11.007.   DOI
49 Bahmani, M., Fatehi, H., Noorzad, A. and Hamedi, J. (2019), "Biological soil improvement using new environmental bacteria isolated from northern Iran", Environ. Geotech., 40, 1-13. https://doi.org/10.1680/jenge.18.00176.   DOI
50 O'Kelly, B.C. and Naughton, P.J. (2008), "Local measurements of the polar deformation response in a hollow cylinder apparatus", Geomech. Geoeng., 3(4), 217-229. https://doi.org/10.1080/17486020802400981.   DOI
51 Hataf, N., Ghadir, P. and Ranjbar, N. (2018), "Investigation of soil stabilization using chitosan biopolymer", J. Cleaner Production, 170, 1493-1500. https://doi.org/10.1016/j.jclepro.2017.09.256za.   DOI
52 Alamdari, P., Nematollahi, O. and Mirhosseini, M. (2012), "Assessment of wind energy in Iran: A review", Renew. Sust. Energ. Rev., 16(1), 836-860. http://dx.doi.org/10.1016/j.rser.2011.09.007.   DOI
53 Kuttarmare, H.C., Ramteke, V.D. and Pandey, N.H. (2014), "The conversion of fluid flow into laminar flow device", Int. J. Emerging Eng. Res. Tech., 2(2), 50-53. https://www.academia.edu/download/56082395/8.pdf.
54 Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.   DOI
55 Koohkesh, N., Samanian, K. and Afsharpour, M. (2020), "Eliminating color from Serish (Eremurus) Paste for paper conservation and restoration", J. Cultural Heritage, 44, 53-62. https://doi.org/10.1016/j.culher.2019.11.009.   DOI
56 Krivenko, P. and Kovalchuk, G.Y. (2007), "Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix", J. Mater. Sci., 42(9), 2944-2952. https://doi.org/10.1007/s10853-006-0528-3.   DOI
57 Kumar, A., Walia, B.S. and Bajaj, A. (2007), "Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil", J. Mater. Civil Eng., 19(3), 242-248. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(242).   DOI
58 Cement Hazards (2001), "Cement Hazards and Controls Health Risks and Precautions in Using Portland Cement", https://elcosh.org/document/1563/d000513/cement-hazardsand-controls-health-risks-and-precautions-in-using-portlandcement.html.
59 Resources for the Future (2021), "Resources for the Future, Social Cost of Carbon 101. https://www.rff.org/publications/explainers/social-cost-carbon101/".
60 Shariatmadari, N., Reza, M., Tasuji, A., Ghadir, P. and Javadi, A.A. (2020). "Experimental study on the effect of chitosan biopolymer on sandy soil stabilization", E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202019506007.   DOI
61 Joga, J.R. and Varaprasad, B. (2019), "Sustainable improvement of expansive clays using xanthan gum as a biopolymer", Civil Eng. J., 5(9), 1893-1903. http://dx.doi.org/10.28991/cej-2019-03091380.   DOI
62 ASTM (1883), "D. ASTM, Standard test method for CBR (California Bearing Ratio) of laboratory-compacted soils, Annual Book of ASTM Standards, vol. 4, 1883".
63 Vala, M.H., Asgarpanah, J., Hedayati, M.H., Shirali, J. and Bejestani, F.B. (2011), "Antibactrial and cytotoxic activity of Eremurus persicus (Jaub and Spach) Boiss", Afr. J. Microbiol. Res., 16, 2349-2352. https://doi.org/10.5897/AJMR11.169.   DOI
64 Wang, Z., Zhang, N., Ding, J., Lu, C. and Jin, Y. (2018), "Experimental study on wind erosion resistance and strength of sands treated with microbial-induced calcium carbonate precipitation", Adv. Mater. Sci. Eng., 2018. https://doi.org/10.1155/2018/3463298.   DOI
65 Smitha, S. and Sachan, A. (2016), "Use of agar biopolymer to improve the shear strength behavior of sabarmati sand", Int. J. Geotech. Eng., 10(4), 387-400. https://doi.org/10.1080/19386362.2016.1152674.   DOI
66 Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng.. 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.   DOI
67 Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.   DOI
68 Jahandari, S., Mohammadi, M., Rahmani, A., Abolhasani, M., Miraki, H., Mohammadifar, L., Kazemi, M., Saberian, M. and Rashidi, M. (2021), "Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres", Materials. 14(22), 7065. https://doi.org/10.3390/ma14227065.   DOI
69 Jahandari, S., Mojtahedi, S.F., Zivari, F., Jafari, M., Mahmoudi, M.R., Shokrgozar, A., Kharazmi, S., Vosough Hosseini, B., Rezvani, S. and Jalalifar, H. (2020), "The impact of long-term curing period on the mechanical features of lime-geogrid treated soils", Geomech. Geoeng., 1-13. https://doi.org/10.1080/17486025.2020.1739753.   DOI
70 Jardine, R., Symes, M. and Burland, J. (1984), "The measurement of soil stiffness in the triaxial apparatus", Geotechnique. 34(3), 323-340. https://doi.org/10.1680/geot.1984.34.3.323.   DOI
71 Kavazanjian Jr, E., Iglesias, E. and Karatas, I. (2009). "Biopolymer soil stabilization for wind erosion control", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering (Volumes 1, 2, 3 and 4). https://doi.org/10.3233/978-1-60750-031-5-881.   DOI
72 Kazemi, M., Courard, L. and Hubert, J. (2022), "Coarse recycled materials for the drainage and substrate layers of green roof system in dry condition: Parametric study and thermal heat transfer", J. Build. Eng., 45, 103487. https://doi.org/10.1016/j.jobe.2021.103487.   DOI