Browse > Article
http://dx.doi.org/10.7234/composres.2019.32.3.148

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber  

Yoon, Byungil (Dacc Carbon Co., Ltd)
Kim, Myeongju (Dacc Carbon Co., Ltd)
Kim, Jaesung (Dacc Carbon Co., Ltd)
Kwon, Hyangjoo (Dacc Carbon Co., Ltd)
Youn, Sungtae (Dacc Carbon Co., Ltd)
Kim, Jungil (Dacc Carbon Co., Ltd)
Publication Information
Composites Research / v.32, no.3, 2019 , pp. 148-157 More about this Journal
Abstract
In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.
Keywords
SiC Fiber; Hybrid Fabric; CMC; Thermal shock cycle test; Oxidation resistance; Oxy-Acetylene torch test; Erosion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Haillon, R.P., "The Hypersonic Revolution : Case Studies in the History of Hypersonic Technology," Vol.1, Air Force History and Museums Program Boilling AFB, DC 20332-1111, 1998.
2 Glass, D.E., "Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles," Proceeding of the 4th International Conference on Sensors, Measurement and Intelligent Materials, 2015.
3 Tandon, R., Dumm, H.P., Corral, E.L., Loehman, R.E., and Kotula, P.G., "Ultra High Temperature Ceramics for Hypersonic Vehicle Applications," Journal of Sandia Reprot, 2006.
4 Yang, Y.-Z., Yang, J.-L., and Fang, D.-N., "Research Progress on Thermal Protection Materials and Structures of Hypersonic Vehicles," Journal of Applied Mathematics and Mechanics (English Edition), Vol. 29, No. 1, 2008, pp. 51-60.   DOI
5 Steelant, J., and Langener, T., "The Lapcat-MR2 Hypersonic Cruiser Concept," Proceeding of the 29th Congress of the International Council of the Aeronautical Sciences, Sep.7-12, 2014.
6 Waltrup, P.J., White, M.E., Zarlingo, F., and Gravlin, E.S., "History of Ramjet and Scramjet Propulsion Development for U.S. Navy Missiles," Journal of Johns Hopkins APL Technical Digest, Vol. 18, No. 2, 1997.
7 Wright, M., and Brockmeyer, J., "Advanced CMC Leading Edge Materials and Processing for Hypersonic Vehicles," Materials for Extreme Environments Program Review, Arlington, Virginia, May 18-22, 2015.
8 Naslanin, L.R., "Fiber-reinforced Ceramic Matrix Composites: State of the Art, Challenge and Perspective," Journal of Materials Science Forum, Vol. 546-549, 2007, pp. 1501-1504.   DOI
9 Grady, J.E., "CMC Technology Advancements of Gas Turbine Engine Applications," NASA Technical Reports Server.
10 Schmidt, S., and Beyer, S., "Use of Advanced Ceramic Matrix Composite Aterialsofr Current and Future Propulsion Technology Applications At Eads-st," EADS.
11 Opila, E.J., and Serra, J.L., "Oxidation of Carbon Fiber-Reinforced Silicon Carbide Matrix Composites at Reduced Oxygen Partial Pressures," Journal of the American Ceramic Society, Vol. 94, Issue. 7, Mar. 2011.
12 Srivastava, V.K., "Micro-Structural Characterization of Si-SiC Ceramic Derived from C/C-SiC Composite," Journal of Materials Science, Vol. 2, No. 1, 2012, pp. 1-4.
13 Glime, W.H., and Cawley, J.D., "Oxidation of Carbon Fibers and Films in Ceramic Matrix Composites: A Weak Link Process," Journal of Carbon, Vol. 33, Issue 8, 1995, pp. 1053-1060.   DOI
14 Yang, X., Zhao-hui, C., and Feng, C., "High-temperature Protective Coatings for C/SiC Composites," Journal of Asian Ceramic Societies, Vol. 2, Issue 4, Dec. 2014, pp. 305-309.   DOI
15 Yajima, S., Hayasi, J., Omori, M., and Okamura, K., "Development of a Silicon Carbide Fiber with High Tensile Strength," Nature, Vol. 261, 1976, pp. 683-685.   DOI
16 Wilson, M., and Opila, E., "A Review of SiC Fiber Oxidation with a New Study of Hi-Nicalon SiC Fiber Oxidation," Journal of Advanced Engineering Materials, Vol. 18, Issue 10, Jun. 2016.
17 Takeda, M., "Silicon Carbide Fiberand Its Application to Ceramic Matrix Composites," NGS Advanced Fibers Co., Ltd., 2018.
18 DiCarlo, J.A., "Advances in SiC/SiC Comporites for Aero-Propulsion," Journal of American Ceramic Society Bulletin, Vol. 95, No. 5, 2013.
19 Yajima, S., Okamura, K., Hayashi, J., and Omori, M., "Synthesis of Continuous SiC Fiber with High Tensile Strength," Journal of the American Ceramic Society, Vol. 59, 1976, pp. 324.   DOI
20 Okamura, K., and Seguchi, T., "Application of Radiation Curing in the Preparation of Polycarbosilane-derived SiC Fibers," Journal of Inorganic and Organometallic Polymers, Vol. 2, No. 1, 1992, pp. 171-179.   DOI
21 Krenkel, W., "Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications," 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
22 Yoon, B.I., Choi, W.C., Kim, J.I., Kim, J.S., Kang, H.G., and Kim, M.J., "Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature," Composites Research, Vol. 18, No. 2, 2017, pp. 116-125.
23 Yin, Y., Binner, J.G.P., Cross, T.E., and Marsa, S.J., "The Oxidation Behavior of Carbon Fiber," Journal of Materials Science, Vol. 29, 1994 pp. 2250-2254.   DOI
24 Li, L., Jian, K., and Wang, Y., "Oxidation Behavior of Continuous SiC Fibers in Static Air," ICSMIM, 2015, pp. 526-539.
25 Al Nasifi, N., Parta, N., Ni, N., Jayaseelan, D.D., and Lee, W.E., "Oxidation Behavior of SiC/SiC Ceramic Matrix Composites in Air," Journal of the European Ceramic Society, Vol. 36, No. 14, 2016, pp. 3293-3302.   DOI
26 Wang, Y., Chen, Z., and Yu, S., "Ablation Behavior and Mechanism Analysis of $C_f/SiC$ Composites," Journal of Materials Research and Technology, Vol. 5, No. 2, 2016, pp. 170-182.   DOI