• Title/Summary/Keyword: equivalent-field method

Search Result 431, Processing Time 0.029 seconds

New Force Expression on Dielectrics: Equivalent Electrifying Current Method

  • Choi, Hong-Soon;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2262-2267
    • /
    • 2017
  • A new force expression on dielectrics subjected to electric field is proposed in this paper. It is the electric version of the equivalent magnetizing current method in magnetic field. From the idea of electromagnetic duality, virtual equivalent electrifying magnetic current method is conjectured in the field of dielectric force problem. Numerical results show that the proposed method has good agreements with the conventional methods. The merits and demerits of the proposed method are also discussed.

A study on the Optimal Far field Source locations in the Acoustic Modelling using Equivalent Source Method (등가소스법을 이용한 실내 음장 모델링에서의 원방 소스 최적화 연구)

  • Baek, Kwang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.216-221
    • /
    • 2001
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and may include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. In the ESM modelling, some of the equivalent positions are chosen to be the same as the first order images of the source inside the enclosure, some are positioned on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal equivalent source positions, the far field sources. Typically, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study, optimal far field source locations are searched using simulated annealing method and simulation results showed that optimally located sources gave better accuracy even with a smaller number of far field sources.

  • PDF

Optimization of the Number and Position of Far Field Sources in Using the Equivalent Source Method (등가음원법에서의 원거리음원의 위치와 개수의 최적화 연구)

  • 백광현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.743-750
    • /
    • 2003
  • The equivalent source method(ESM) is used for the calculation of the internal pressure field for an enclosure which can have arbitrary boundary conditions and nay include internal objects which scatter the sound field. The advantage of using ESM is that it requires relatively low computing cost and is easy to model the internal diffracting objects. Typical ESM modeling uses two groups of equivalent source positions. One group includes the first order images of the source inside the enclosure. The Positions of the other group are usually on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. This study is on the optimal far field sources positions when using the equivalent source method. In general, the far field sources are evenly distributed on a surface of a virtual sphere which is centered at the enclosure with a sufficiently large radius. In this study. optimal far field source locations are searched using simulated annealing method for various radii of spheres where far field sources are located. Simulation results showed that optimally located sources with adequate distance away from the enclosure center gave better result than sources with even distribution even with a smaller number of far field sources.

Acoustic holography for an engine radiation noise using equivalent sources (등가음원을 이용한 엔진 방사 소음의 음향 홀로그래피에 대한 연구)

  • Jeon, In-Youl;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1101-1106
    • /
    • 2004
  • This study presents the reconstruction of sound field radiated from an automotive engine using equivalent sources. Basic concept of the method presented is to replace the engine noise source with elementary sources of multipoles, e.g., monopoles and dipoles. The so-called Helmholtz equation least-squares (HELS) method can reconstruct the sound radiation fields from spherical geometries in a series expansion of spherical Hankel functions and spherical harmonics. In this paper, multi-Point, multipole equivalent sources are employed to reconstruct the sound field radiated from an automotive engine with a fixed rotation speed. To ensure and improve the accuracy of reconstruction, the spatial filters of multipole coefficients and wave-vectors are adopted for suppressing the adverse effect of high-order multipoles. Optimal filter shapes are designed with regularization parameters minimizing the generalized cross validation (GCV) function between actual and reproduced model. After regeneration of field pressures using the proposed method as many as necessary, the vibro-acoustic field of an engine could be reconstructed by using the BEM-based near-field acoustic holography (NAH) technique in a cost-effective manner.

  • PDF

Application of the Equivalent-Field Method for Output Calculation: Is it safe for elongated x-ray fields\ulcorner (출력인자 계산에 이용되는 등가면법의 타당성 연구 : 장방형 X-선 조사면에 대해서 안전한가\ulcorner)

  • Kim, Chang-Seon;Kim, Chul-Yong;Park, Myung-Sun
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.195-200
    • /
    • 1998
  • Purpose: When an elongated x-ray field is used for treating a patient, the equivalent- field method is commonly used for the output calculation. This study is intended for investigating potential factors such as, beam quality, field elongation ratio, and depth of measurement, which might effect on the applicability of the equivalent square technique for output calculation. The derivation of a 'rule of thumb' for the application criteria of the equivalent-field method is also aimed. Materials and Methods: Three x-ray beams, 4-, 6- and 10-MV, were employed for this study. Width of the rectangular field was ranged from 5-40 cm and the elongation ratio (length/width) 1:0 to 10:0. An elongation effect was measured in a water phantom at three different depths, dmax, 5-cm, and 10-cm. For an elongated field and its equivalent square field, the output factor was measured and the difference in the output factor were examined between two fields. Results and Discussions: As the elongation ratio increases, a larger discrepancy in outputs is observed between the elongated rectangular field and its corresponding equivalent square field. Output was measured larger for an elongated field than for its corresponding equivalent square field and the maximal difference over 10 % was found. The difference was found larger for the smaller field with the same elongation ratio. The effect of the beam quality and the depth of measurement on the output difference was minimal. Conclusion: Based on the study, there is criteria for the application of the method for output calculation. For the combination of long axis and elongation ratio whose relationship satisfies Elongation ratio < (0.48) (Long axis) - 0.5, the equivalent-field method is valid for output calculation within 2 % for the field whose long axis < 25-cm. For other combinations, instead of using the equivalent-field method, direct output measurement is recommended. This criteria can be applied for 4-10 MV x-ray beams up to 10-cm depth.

  • PDF

Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer (개량된 등가비열법을 이용한 상변화 열전달의 수치해석)

  • Mok Jinho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.

A Study on the Rectangular Distribution of far Field Sources in Equivalent Source Method (등가음원법에서의 직육면체형 원거리음원 배치에 관한 연구)

  • 백광현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2004
  • The equivalent source method (ESM) uses two groups of equivalent source positions. One group includes the first order images of the sound source inside the enclosure. The positions of the other group are usually on a spherical surface some distance outside the enclosure. A proper selection of the positions for the far field sources could greatly improve the performance of the modeling accuracy and reduce the number of the sources to achieve the required accuracy. This study uses optimally distributed far field source positions on the surface of enlarged version of the rectangular enclosure instead of using typical spherical distribution. Simulations using various sizes of the box shaped distribution are executed and optimal positions are searched using an optimization technique from the larger number of candidate positions. The results of using these far field source positions are compared and analyzed.

A Study on Minimising the Errors on the Boundary Conditions when Using an Equivalent Source Technique for a Modelling of Sound Field inside an Enclosure (등가소스법을 이용한 공간 내의 음장 모델링에서 경계면 조건 오차의 최소화에 관한 연구)

  • Baek, Kwang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.581-586
    • /
    • 2000
  • The equivalent source method is used to calculate the internal pressure field for an enclosure which can have arbitrary boundary conditions and may include internal objects which scatter the sound. Some of the equivalent positions are chosen to be the same as the first order images of the source inside the enclosure, some are positioned on a spherical surface some distance outside the enclosure. The normal velocity on the surfaces of the enclosure walls is evaluated at a larger number of positions than there are equivalent sources. The sum of the squared difference between this velocity and the expected is minimized by adjusting the strength of the equivalent sources. The convergence of this method is checked by evaluating the velocity error at a larger number of monitoring positions. Example results are presented for various numbers of sources and evaluation points. The results showed that in general the more equivalent sources increased the accuracy of the sound field predictions but the accuracy is not too much sensitive to the numbers of evaluation points.

  • PDF

Incremental Theory of Reinforcement Damage in Discontinuously-Reinforced Composite (분산형 복합재료의 강화재 손상 증분형 이론)

  • 김홍건
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.122-126
    • /
    • 2000
  • In particle or short-fiber reinforced composites cracking of the reinforcements is a significant damage mode because the broken reinformcements lose load carrying capacity . The average stress in the inhomogeneity represents its load carrying capacity and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix, An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. influence of the cracking damage on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.