• Title/Summary/Keyword: equilibrium factor

Search Result 418, Processing Time 0.02 seconds

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures (구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소)

  • Kim, Ki Du;Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.447-455
    • /
    • 2006
  • A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

An Experimental Study of Sand Beach Profile Evolution under Regular Waves Corresponding to Storm and Normal Conditions (규칙파 조건에서의 사질해안 폭풍파와 평상파 단면변화 실험연구)

  • Choi, Junwoo;Roh, Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.333-342
    • /
    • 2017
  • In order to understand the mechanism of the cross-shore evolution of storm (barred) and normal (nonbarred) profiles of a sandy beach, the vertically two-dimensional laboratory experiment was performed with a movable bed. The beach profiles and free surface motion were measured under monochromatic wave conditions evolving the storm and normal beach profiles. The observation was conducted in the surf zone during the alternation of the two wave conditions to reach its quasi-equilibrium state. The sandbar-crest and trough and the steep berm were evolved due to the plunging breakers in the storm case, and the bar-trough was decayed due to the spilling breakers in the normal case. From the measurements, it was found that the storm wave case was in an erosion state and the normal wave case was in an accretion state. The strong undertow, which is a dominant factor of the offshore migration mechanism, was developed in the storm wave case, and the weak undertow was developed in the normal wave case. The skewness and the asymmetry of the nonlinear wave motion, which is a dominant factor of the onshore migration mechanism, was measured similarly in both cases.

Liquefaction-Induced Uplift of Geotechnical Buried Structures: Centrifuge Modeling and Seismic Performance-Based Design (지반 액상화에 의한 지중 매설구조물의 부상: 원심모형시험 및 내진성능설계)

  • Kang, Gi-Chun;Iai, Susumu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.5-16
    • /
    • 2012
  • Geotechnical buried structures with relatively light weight have been suffering from uplift damage due to liquefaction in the past earthquakes. The factor of safety approach by Koseki et al. (1997a), which is widely used in seismic design, predicts the triggering of uplift. However, a method for "quantitative" estimates of the uplift displacement has yet to be established. Estimation of the uplift displacement may be an important factor to be considered for designing underground structures under the framework of performance-based design (ISO23469, 2005). Therefore, evaluation of the uplift displacement of buried structure in liquefied ground during earthquakes is needed for a performance-based design as a practical application. In order to predict the uplift displacement quantitatively, a simplified method is derived based on the equilibrium of vertical forces acting on buried structures in backfill during earthquakes (Tobita et al., 2012). The method is verified through comparisons with results of centrifuge model tests and damaged sewerage systems after the 2004 Niigata-ken Chuetsu, Japan, earthquake. The proposed flow diagram for performance-based design includes estimation of the uplift displacement as well as liquefaction limit of backfill.

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries (석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구)

  • Lee, Sang-Eun;Kim, Hak-Sung;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.255-274
    • /
    • 2014
  • The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

Geochemical Characteristics of Geothermal Water and Groundwater in the Dongrae Hot-Spring Area (동래온천지역의 지열수와 지하수의 지화학적 특성)

  • Suck Jong Han;Se-Yeong Hamm;Ig Hwan Sung;Byeong Dae Lee;Byong Wook Cho;Myong Hee Cho
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.207-225
    • /
    • 1999
  • Twenty water samples (eleven groundwater and nine geothermal water samples) were collected to elucidate hydrogeochemical characteristics of the groundwater and geothermal water in the Dongrae hot-spring area and its vicinity. Major and minor elements were analyzed for ground and geothermal water samples. Physicochemical properties of the groundwater and the geothermal water were examined and chemical composition of the two waters were compared. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. The groundwaters belong to $Ca-HCO_3$ type, while the geothermal waters belong to Na-Cl type. The Na and Cl concentrations in the Dongrae hot-spring area are higher than those of other granite areas in South Korea. The Na/Cl weight ratio ranges from 0.7 to 1.3 for the geothermal waters. On the phase stability diagram groundwaters fall effectively in the field of stability of kaolinite, while geothermal waters fall in the stability field of microcline or kolinite depending on the chemical composition system. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 115 and $145^{\circ}C$.

  • PDF

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF