DOI QR코드

DOI QR Code

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries

석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구

  • Lee, Sang-Eun (Dept. of Energy & mineral Resources Engineering, Kangwon National University) ;
  • Kim, Hak-Sung ;
  • Jang, Yoon-Ho (Dept. of Energy & mineral Resources Engineering, Kangwon National University)
  • 이상은 (강원대학교 삼척캠퍼스 에너지자원공학과) ;
  • 김학성 (강원대학교 삼척캠퍼스 방재대학원 광해.지질방재전공) ;
  • 장윤호 (강원대학교 삼척캠퍼스 에너지자원공학과)
  • Received : 2014.08.08
  • Accepted : 2014.08.27
  • Published : 2014.08.31

Abstract

The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

본 연구는 강원도 강릉시 소재의 ${\bigcirc}{\bigcirc}$ 석회석 광산에서 2012년 8월 23일 오후 7시경 붕괴된 대규모 암반사면을 대상으로 한다. 붕괴 이전에 사면의 높이는 약 200 m이고 평균경사는 $45^{\circ}$로 형성되어 있다. 사면 붕괴 후 추정된 붕괴량은 $1,500,000m^3$ 정도이다. 사면 붕괴의 원인을 분석하기 위하여 시추, 물리탐사, 지표지질조사, 선구조분석, 공내영상촬영, 입체사진영상촬영, 실내시험 및 현장시험, 년도별 채광현황 및 강우량 분석등의 현장 및 지반조사를 실시하였다. 사면의 안정성을 파악하기 위하여 SMR, 평사투영법, 한계평형법, 연속체 및 불연속체 해석을 수행하였다. 이 결과들로부터 사면붕괴의 원인은 지형, 강우, 암종 및 암질, 불연속면, 석회암 공동이나 단층의 지질구조적 특성 등 여러 요인들이 복합적으로 작용하여 사면활동이 발생한 것으로 추정되지만, 석회암 공동을 고려하지 않을 경우 사면 붕괴는 발생하지 않는 것으로 분석되었다. 석회암 공동을 고려한 연속체 해석에서 사면 안전율이 0.66으로 나타났다. 따라서 대규모 사면붕괴의 근본적인 원인은 단층대를 따라 발달하고 있는 석회암 공동의 영향에 기인하는 것으로 판단된다.

Keywords

References

  1. 3GSM GmbH, 2004, ShapeMetrix3D Manual Version 3.5, Austria.
  2. Carrara, P. E. and J. M. O'Neill, 2003, Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA, Quaternary Research, 59, pp. 25-35. https://doi.org/10.1016/S0033-5894(02)00010-8
  3. Hoek, E. and M. S. Diederichs, 2006, Empirical estimation of rock mass modulus, International Journal of Rock Mechnics & Mining Sciences, 43, pp. 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  4. Itasca Consulting Group, Inc., 2000, UDEC User's Guide, Minnesota, USA.
  5. Itasca Consulting Group, Inc., 2011, FLAC User's Guide, Minnesota, USA.
  6. KIGAM, 2001, 강릉도폭 (1 : 25,000)
  7. Lambe, T. W. and R. V. Whitman, 1978, Soil Mechanics - SI Version, John Wiley & Sons, 553p.
  8. Lee, S. E. and Y. H. Jang, 2010, Stability assesment of the slope at the disposal site of waste rock in limestone mine, Journal of KSRM, 20, No. 6, pp. 475-490.
  9. Park, B. S., H. Jo, S. H. Cha and K. H. Lee, 2006, Case study on the causes for the failure of large scale rock mass slope composed of metasedimentary rocks, Journal of KSRM, 16, No. 6, pp. 506-525.
  10. Romana, M., 1985, New adjustment ratings for application of Bieniawski classification to slopes, Proceedings of the International Symposium on Role of Rock Mechanics, Zacatecas, Mexico, pp. 49-53.
  11. Sabins, F. F., 1997, Remote Sensing : Principles and Interpretation, W. H. Freeman and Company, USA.
  12. Singh, B. and R. K. Goel, 1999, Rock Mass Classification - A Practical Approach in Civil Engineering, Elsvier, 293p.
  13. Sun, W. C., Y. S. Lee, H. W. Kim and B. J. Lee, 2013, Stability assesment on the final fit slope in S limestone mine, Journal of KSRM, 23, No. 2, pp. 99-109.
  14. Wyllie, D. C. and C. W. Mah, 2004, Rock Slope Engineering, Spoon Press, USA & Cananda, 431p.