• Title/Summary/Keyword: epoxy/anhydride

Search Result 62, Processing Time 0.017 seconds

Polyvinylchloride Plasticized with Acetylated Monoglycerides Derived from Plant Oil (아세틸화 모노글리세라이드계 가소제 합성 및 PVC 가소성능에 관한 연구)

  • Lee, Sangjun;Yuk, Jeong-Suk;Kim, A-Ryeon;Choung, Ji Sun;Shin, Jihoon;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2017
  • To replace phthalate plasticizer for PVC, acetylated monoglyceride (AMG) plasticizers were prepared from plant oil and their plasticization effects were also investigated. Transesterification of coconut oil by glycerol followed by acetylation with acetic anhydride gave AMG-CoCo (Coco : Coconut Oil). In addition, AMG-GMO (GMO : Glycerol monooleate) and AMG-GMO-Epoxy were synthesized by acetylation and epoxidation with glycerol monooleate. It was found that the thermal stability of AMG plasticizers increased in the following order: AMG-GMO-Epoxy > AMG-GMO > AMG-CoCo and all three plasticizers were thermally more stable than those of common petroleum-based plasticizer DOP (Dioctyl phthalate). The tensile strain values of the PVC containing AMG compounds were ca. 770~810%, while tensile strength values were ca. 19~22 MPa, which were higher than those of PVC containing DOP. DMA (Dynamic Mechanical Analysis) results showed that the miscibility of AMG-GMO-Epoxy in PVC was excellent and the $T_g$ of PVC containing AMG-GMO-Epoxy at 50 phr decreased down to $24^{\circ}C$. Finally, the leaching experiment result showed that the weight loss values of PVC containing AMG-GMO and AMG-GMO-Epoxy at 50 phr were as low as 2 and 1%, respectively, indicating that they have high water migration resistance. The above findings suggested that AMG-GMO-Epoxy could be one of plant oil-based PVC plasticizers to replace DOP.

Electrodeposition onto the Surface of Carbon Fiber and its Application to Composites(I) - Electrodeposition of MVEMA and EMA (탄소섬유 표면에의 고분자 전착과 복합재료 물성(I) - MVEMA와 EMA의 전착 -)

  • Kim, Minyoung;Kim, Jihong;Kim, Wonho;Kim, Booung;Hwang, Byungsun;Choi, Youngsun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.894-900
    • /
    • 1998
  • An interphase between carbon fiber and epoxy matrix was introduced to increase impact strength of carbon fiber reinforced composites (CFRC) without sacrificing the interlaminar shear strength. Flexible polymers, I. e., MVEMA (poly(methyl vinyl ether-co-maleic anhydride)) and EMA(poly(ethylene-co-maleic anhydride)), which have reactive functional groups were considered as interphase materials. Weight hain of MVEMA and EMA onto the surface of carbon fibers was evaluated by changing the parameters of electrodeposition process. Electrodeposition mechanism of polymers which have anhydride functional group was identified by IR spectroscopy, that is, the generation of $RCOO^-$ functional group by the attack of hydroxide anion in the basic solution was observed. The weight gain was increased by increasing concentration of polymers, current density, and electrodeposition time. However the excess generation of oxygen gas decreased the weight gain by removing the deposited polymers. Washing in the running water easily removed the deposited polymers which are on the fiber surface without bonding, as a results, only 0.5 wt% of deposited polymers are remained.

  • PDF

Properties of Epoxy Adhesive Modified with Siloxane-imide (실록산 이미드로 개질된 변성 에폭시 수지의 물성)

  • Kim, W.;Gong, H.J.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • Peel strength of epoxy adhesives can be increased by adding some amounts of XNBR. In this case, thermal resistance of the adhesive will be decreased by decrease of glass transition temperature of the adhesive. Epoxy resin modified with siloxane-imide was synthesized to improve thermal resistance and peel strength of the adhesive, after that the properties of modified epoxy resin were compared with the commercial epoxy resin. When 5% XNBR was added to 30% modified epoxy resin, this adhesive showed 0.42 N/mm of peel strength and $155^{\circ}C$ of glass transition temperature. These properties are enough compared to the required properties by the industry, i.e., 0.3 N/mm and $150^{\circ}C$, respectively. Weight loss of the modified epoxy resin by the treatment of nitric acid and 0.1N NaOH was reduced, but weight gain by the humid condition was increased by the presence of benzene ring and imide ring. 30% modified epoxy resin blended with 5% XNBR showed 220% improvement in tensile strength and elongation compared to the case of common epoxy resin. This is due to the flexibility of the siloxane in the modified epoxy resin.

Synthesis, Antitumor Activity and Release Rate of Polymers Containing Anionic Group and 5-Fluorouracil

  • Kang, Nam-In;Lee, Sun-Mi;Ha, Chang-Sik;Cho, Won-Jei
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.277-284
    • /
    • 2001
  • Poly(exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride)s [poly(ETA)s] and poly($\alpha$-ethoxy-exo-3,6-epoxy-1,2,3,6-tetrahydrophthaloyl-5-fluorouracil)s [poly(EETFU)s ] with various average molecular weights were prepared by photopolymerizations. The number average molecular weights of the fractionated poly(ETA)s and poly(EETFU)s determined by GPC were in the range of 3,600∼21,000 and 3,600-33,400, respectively. The release rate of 5-FU from poly(EETFU) decreased with increasing average molecular weight. The in vitro cytotoxicity of poly(ETA) against a normal cell line was lower than that of 5-fluorouracil(5-FU), The in vivo antitumor activities of the synthesized samples at dosage of 0.8 mg/kg against mice bearing sarcoma 180 tumor cell line decreased in the following order: poly(EETFU) > poly(ETA) > EETFU > ETA > 5-FU. The antiangiogenic activities of the poly(ETA)s were better than those of 5-FU.

  • PDF

Effect of Thermal Aging Temperature on Weight Loss and Glass Transition Temperature of Epoxy Adhesives (열화 온도가 에폭시 접착제의 질량변화 및 유리전이온도에 미치는 영향)

  • Park, Soo-Jin;Kim, Jong-Hak;Joo, Hyeok-Jong;Kim, Joon-Hyung;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • In this study, the effect of thermal aging temperature on the weight loss, glass transition temperature, and morphology of epoxy adhesives cured with amine (D-230), amide (G-5022), and anhydride (HN-2200) was investigated. As a result, the weight loss of three specimens was increased with increasing the thermal aging temperature. The result was attributed to the thermal aging which was occurred at the surface of adhesive specimens at high aging temperature, resulting in increasing the weight loss of the specimens. According to the DSC result, the glass transition temperature of DGEBA/D-230 and DGEBA/G-5022 samples war increased as the aging temperature increased, whereas the glass transition temperature of DGEBA/HN-2200 samples was constant above aging temperature of $150^{\circ}C$ and aging tine of 7 days. The SEM result indicated that the surface of DGEBA/G-5022 specimen showed more rough topography than that of DGEBA/D-230 or DGEBA/HN-2200 specimen after thermal aging. This could be correlated with the result of weight loss.

Interfacial and Mechanical Properties of Glass Fiber Reinforced Epoxy Composites with Different Crosslinking Density after Saline Water Aging (기지재의 가교밀도에 따른 유리섬유 복합재료의 염수노화 후 계면 및 기계적 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.186-191
    • /
    • 2018
  • Condition and properties of composites with different chemical structure of epoxy matrix were observed after saline solution treatment. Epoxy was used as matrix and the flexibility was controlled by using 2 typed-epoxies and 3 types hardeners (amine, acid anhydride and amide). Saline water treatment was conducted with 6 wt% NaCl solution at $60^{\circ}C$ for 0, 15, and 30 days. Cross section was observed and interfacial and mechanical and properties was evaluated. Amine type exhibited the highest crosslinking density and mechanical and interfacial properties whereas water absorbance was lowest. It is because that the water molecules can be hardly penetrate into the epoxy matrix or the interface between epoxy and glass fiber and it leads to saline water resistance of composites.

Curing Kinetics of the No-Flow Underfill Encapsulant

  • Jung, Hye-Wook;Han, Sang-Gyun;Kim, Min-Young;Kim, Won-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.134-137
    • /
    • 2001
  • The cure kinetics of a cycloalipatic epoxy / anhydride / Co(II) system for a no-flow underfill encapsulant, has been studied by using a differential scanning calorimetry(DSC) under isothermal and dynamic conditions over the temperature range of $160^{\circ}C ~220^{\circ}C$. The kinetic analysis was carried out by fitting dynamic/isothermal heating experimental data to the kinetic expressions to determine the reaction parameters, such as order of reaction and reaction constants. Diffusion-controlled reaction has been observed as the cure conversion increases and successfully analyzed by incorporating the diffusion control term into the rate equation. The prediction of reaction rates by the model equation corresponded well to experimental data at all temperature.

  • PDF

Cure Behavior of an Epoxy/Anhydride System by Torsion Pendulum (Torsion Pendulum에 의한 에폭시/산무수물계의 경화거동)

  • Lee, Jong-Geun;Park, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.6 no.5
    • /
    • pp.494-503
    • /
    • 1996
  • 에폭시/산무수물계의 등온 경화거동을 새로이 제작된 Torsion Pendulum(TP)으로 다양한 온도에서 조사하였으며 경화반응을 촉진시키기 위하여 두 종류의 경화촉진제를 사용하였다. 새로이 제작된 TP는 개인용 컴퓨터를 이용하여 모든 기계\ulcorner인 작동과 date 수집 및 분석이 자동으로 처리될 수 있도록 하였다. 이 기기로부터 얻어진 결과인 경화 동안의 상대전단강성율(RSR, relative shear rigidity)과 log decrement(LD)의 변화로부터 제작된 TP가 잘 작동한다는 것을 알 수 있었다. 두 종류의 촉진제가 전체적인 경화과정에 미치는 촉진효과는 비슷하였으나 각 촉진제로부터 얻어진 LD 곡선을 보면 서로 다른 모양을 나타내었다. 이것은 경화촉진제가 반응 촉진효과 이외에도 경화거동에 영향을 미친다는 것을 의미하며, 따라서 이러한 경화거동의 차이는 경화물의 성질에 영향을 줄 수 있다.

  • PDF

A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission (인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.54-66
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE) monitoring. A polymeric maleic anhydride coupling agent and a monomeric amino-silane coupling agent were used via the electrodeposition (ED) and the dipping applications, respectively. Both coupling agents exhibited significant improvements in interfacial shear strength (IFSS) compared to the untreated case under tensile and compressive tests. The typical microfailure modes including fiber break of cone-shape, matrix cracking, and partial interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed under compressive test. For both loading types, fiber breaks occurred around just before and after yielding point. In both the untreated and treated cases AE amplitudes were separately distributed for the tensile testing, whereas they were closely distributed for the compressive tests. It is because of the difference in failure energies of carbon fiber between tensile and compressive loading. The maximum AE voltage for the waveform of carbon or basalt fiber breakages under tensile tests exhibited much larger than those under compressive tests, which can provide the difference in the failure energy of the individual failure processes.

  • PDF

Microfailure Mechanisms of Single-Fiber Composites Using Tensile/Compressive Fragmentation Techniques and Acoustic Emission (인장/압축 Fragmentation시험법과 음향방출을 이용한 단 섬유 복합재료의 미세파괴 메커니즘)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Amino-silane and maleic anhydride polymeric coupling agents were used via the dipping and electrodeposition (ED), respectively. Both coupling agents exhibited higher improvements in interfacial shear strength (IFSS) under tensile tests than compressive cases. However, ED treatment showed higher IFSS improvement than dipping case under both tensile and compressive test. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed during compressive test. For both the untreated and treated cases AE distributions were separated well under tensile testing. On the other hand, AE distributions were rather closer under compressive tests because of the difference in failure energies between tensile and compressive loading. Under both loading conditions, fiber breaks occurred around just before and after yielding point. Maximum AE voltage fur the waveform of carbon or basalt fiber breakage under tensile tests exhibited much larger than those under compressive tests.

  • PDF