DOI QR코드

DOI QR Code

Polyvinylchloride Plasticized with Acetylated Monoglycerides Derived from Plant Oil

아세틸화 모노글리세라이드계 가소제 합성 및 PVC 가소성능에 관한 연구

  • Lee, Sangjun (Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Yuk, Jeong-Suk (Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, A-Ryeon (Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Choung, Ji Sun (Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Shin, Jihoon (Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Young-Wun (Center for Bio-based Chemistry, Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT))
  • 이상준 (한국화학연구원, 융합화학연구본부, 바이오화학연구센터) ;
  • 육정숙 (한국화학연구원, 융합화학연구본부, 바이오화학연구센터) ;
  • 김아련 (한국화학연구원, 융합화학연구본부, 바이오화학연구센터) ;
  • 정지선 (한국화학연구원, 융합화학연구본부, 바이오화학연구센터) ;
  • 신지훈 (한국화학연구원, 융합화학연구본부, 바이오화학연구센터) ;
  • 김영운 (한국화학연구원, 융합화학연구본부, 바이오화학연구센터)
  • Received : 2016.11.02
  • Accepted : 2016.11.28
  • Published : 2017.02.10

Abstract

To replace phthalate plasticizer for PVC, acetylated monoglyceride (AMG) plasticizers were prepared from plant oil and their plasticization effects were also investigated. Transesterification of coconut oil by glycerol followed by acetylation with acetic anhydride gave AMG-CoCo (Coco : Coconut Oil). In addition, AMG-GMO (GMO : Glycerol monooleate) and AMG-GMO-Epoxy were synthesized by acetylation and epoxidation with glycerol monooleate. It was found that the thermal stability of AMG plasticizers increased in the following order: AMG-GMO-Epoxy > AMG-GMO > AMG-CoCo and all three plasticizers were thermally more stable than those of common petroleum-based plasticizer DOP (Dioctyl phthalate). The tensile strain values of the PVC containing AMG compounds were ca. 770~810%, while tensile strength values were ca. 19~22 MPa, which were higher than those of PVC containing DOP. DMA (Dynamic Mechanical Analysis) results showed that the miscibility of AMG-GMO-Epoxy in PVC was excellent and the $T_g$ of PVC containing AMG-GMO-Epoxy at 50 phr decreased down to $24^{\circ}C$. Finally, the leaching experiment result showed that the weight loss values of PVC containing AMG-GMO and AMG-GMO-Epoxy at 50 phr were as low as 2 and 1%, respectively, indicating that they have high water migration resistance. The above findings suggested that AMG-GMO-Epoxy could be one of plant oil-based PVC plasticizers to replace DOP.

프탈레이트계 PVC 가소제를 대체하기 위해 식물유 기반 아세틸화 모노글리세라이드(AMG)계 가소제를 합성하여 PVC에 대한 가소성능을 평가하였다. 코코넛 오일과 글리세롤로부터 전이 에스테르화 반응과 아세틸화 반응을 거쳐 AMG-CoCo를 합성하였고 글리세롤 모노올리에이트(GMO)로부터 아세틸화 반응을 통해 AMG-GMO를 그리고 추가적으로 에폭시화 반응을 거쳐 AMG-GMO-Epoxy 합성하고 그 구조들을 확인하였다. AMG계 가소제의 열안정성을 평가한 결과, AMG-CoCo < AMG-GMO < AMG-GMO-Epoxy 순으로 열분해 온도가 높았으며 모두 상용 가소제인 DOP의 열분해 온도보다 높았다. AMG계 가소제를 함유한 PVC의 경우, 인장 신율은 770~810%, 인장 강도는 약 19~22 MPa로 DOP로 가소화된 PVC보다 우수하였다. DMA 분석 결과, AMG-GMO-Epoxy와 PVC는 매우 우수한 섞임성을 보여주었고 AMG-GMO-Epoxy를 50 phr 함유한 PVC의 $T_g$$24^{\circ}C$까지 감소하였다. 물에 대한 가소제의 용출 실험 결과, AMG-GMO와 AMG-GMO-Epoxy를 50 phr 포함한 PVC 경우 무게 감소가 약 2%와 1%로 내용출성이 매우 우수함을 알 수 있었다. 따라서 AMG-GMO-Epoxy가 DOP를 대체할 PVC 가소제로 경쟁력이 있다고 할 수 있다.

Keywords

References

  1. M. Rahman and C. S. Brazel, The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges, Prog. Polym. Sci., 29, 1223-1248 (2004). https://doi.org/10.1016/j.progpolymsci.2004.10.001
  2. J. R. Pena, M. Hidalgo, and C. Mijangos, Plastification of poly(vinyl chloride) by polymer blending, J. Appl. Polym. Sci., 75, 1303-1312 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000307)75:10<1303::AID-APP12>3.0.CO;2-4
  3. L. G. Krauskopf, How about alternatives to phthalate plasticizers?, J. Vinyl Addit. Technol., 9, 159-171 (2003). https://doi.org/10.1002/vnl.10079
  4. Y. Tsumura, S. Ishimitsu, A. Kaihara, K. Yoshii II, Y. Nakamura, and Y. Tonogai, Di(2-ethylhexyl) phthalate contamination of retail packed lunches caused by PVC gloves used in the preparation of foods. Food Addit. Contam., 18, 569-579 (2001). https://doi.org/10.1080/02652030120071
  5. A. Stuart, M. M. McCallum, D. Fan, D. J. LeCaptain, C. Y. Lee, and D. K. Mohanty, Poly(vinyl chloride) plasticized with succinate esters: synthesis and characterization, Polym. Bull., 65, 589-598 (2010). https://doi.org/10.1007/s00289-010-0271-4
  6. P. Karmalm, T. Hjertberg, A. Jansson, and R. Dahl, Thermal stability of poly (vinyl chloride) with epoxidised soybean oil as primary plasticizer. Polym. Degrad. Stab., 94, 2275-2281 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.07.019
  7. H. Baltacioglu and D. Balkose, Effect of zinc stearate and/or epoxidized soybean oil on gelation and thermal stability of PVC-DOP plastigels, J. Appl. Polym. Sci., 74, 2488-2498 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2488::AID-APP18>3.0.CO;2-B
  8. M. A. Semsarzadeh, M. Mehrabzadeh, and S. S. Arabshahi. Dynamic mechanical behavior of the dioctyl phthalate plasticized polyvinyl chloride-epoxidized soya bean oil, Eur. Polym. J., 38, 351-358 (2002). https://doi.org/10.1016/S0014-3057(01)00168-9
  9. P. Jia, M. Zhang, L. Hu, G. Feng, C. Bo, and Y. Zhou, Synthesis and application of environmental castor oil based polyol ester plasticizers for poly(vinyl chloride), ACS Sustain. Chem. Eng., 3, 2187-2193 (2015). https://doi.org/10.1021/acssuschemeng.5b00449
  10. M. P. Scott, M. Rahman, and C. S. Brazel, Application of ionic liquids as low-volatility plasticizers for PMMA, Eur. Polym. J., 39, 1947-1953 (2003). https://doi.org/10.1016/S0014-3057(03)00129-0
  11. M. P. Scott, C. S. Brazel, M. G. Benton, J. W. Mays, J. D. Holbrey, and R. D. Rogers, Application of ionic liquids as plasticizers for poly(methyl methacrylate), Chem. Commun., 102, 1370-1371 (2002).
  12. B. Yin and M. Hakkarainen, Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC, J. Appl. Polym. Sci., 119, 2400-2407 (2011). https://doi.org/10.1002/app.32913
  13. L. V. Labrecque, R. A. Kumar, V. Dave, R. A. Gross, and S. P. McCarthy, Citrate esters as plasticizers for poly(lactic acid), J. Appl. Polym. Sci., 66, 1507-1513 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0
  14. N. Gil, I. Negulescu, and M. Saska, Evaluation of the effects of biobased plasticizers on the thermal and mechanical properties of poly(vinyl chloride), J. Appl. Polym. Sci., 102, 1366-1373 (2006). https://doi.org/10.1002/app.24132
  15. S.-J. Kang, S.-J. Bae, D.-E. Jin, and J. Kim, Development of an eco-friendly plasticizer using crude glycol derived from the biodiesel process, J. Korean Soc. Occup. Environ. Hyg., 24, 365-370 (2014). https://doi.org/10.15269/JKSOEH.2014.24.3.365
  16. J. Choi and S.-Y. Kwak, Hyperbranched poly(${\varepsilon}$-caprolactone) as a nonmigrating alternative plasticizer for phthalates in flexible PVC, Environ. Sci. Technol., 41, 3763-3768 (2007). https://doi.org/10.1021/es062715t
  17. S. Lee, K.-H. Ko, J. Shin, N.-K. Kim, Y.-W. Kim, and J.-S. Kim, Effects of the addition of dimer acid alkyl esters on the properties of ethyl cellulose, Carbohydr. Polym., 121, 284-294 (2015). https://doi.org/10.1016/j.carbpol.2014.12.029
  18. M. Tarvainen, R. Sutinen, S. Peltonen, P. Tiihonen, and P. Paronen, Starch acetate-A novel film-forming polymer for pharmaceutical coatings. J. Pharm. Sci., 91, 282-289 (2002). https://doi.org/10.1002/jps.10027
  19. V. B. Borugadda and V. V Goud, Epoxidation of castor oil fatty acid methyl esters (COFAME) as a lubricant base stock using heterogeneous ion-exchange resin(IR-120) as a catalyst, Energy Procedia, 54, 75-84 (2014). https://doi.org/10.1016/j.egypro.2014.07.249
  20. W. H. Park, R. W. Lenz, and S. Goodwin, Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid, Macromolecules, 31, 1480-1486 (1998). https://doi.org/10.1021/ma9714528
  21. P. K. Gamage, A. S. Farid, and L. Karunanayake, Kinetics of degradation of PVC-containing novel neem oil as stabilizer, J. Appl. Polym. Sci., 112, 2151-2165 (2009). https://doi.org/10.1002/app.29686
  22. F. E. Okieimen, Studies in the utilization of epoxidised vegetable oils as thermal stabilizer for polyvinyl chloride, Ind. Crops Prod., 15, 71-75 (2002). https://doi.org/10.1016/S0926-6690(01)00097-8
  23. D. Martinz and J. Quadros, Compounding PVC with renewable materials, Plast. Rubber Compos., 37, 459-464 (2008). https://doi.org/10.1179/174328908X362917
  24. N. Kinjo and T. Nakagawa, Antiplasticization in the slightly plasticized poly(vinyl chloride), Polym. J., 4, 143-153 (1973). https://doi.org/10.1295/polymj.4.143
  25. M. B. Benaniba and V. Massardier-Nageotte, Evaluation effects of biobased plasticizer on the thermal, mechanical, dynamical mechanical properties, and permanence of plasticized PVC. J. Appl. Polym. Sci., 118, 3499-3508 (2010). https://doi.org/10.1002/app.32713
  26. J. W. Barlow and D. R. Paul, Polymer alloys, Annu. Rev. Mater. Sci., 11, 299-319 (1981). https://doi.org/10.1146/annurev.ms.11.080181.001503
  27. N. Gil, M. Saska and I. Negulescu, Evaluation of the effects of biobased plasticizers on the thermal and mechanical properties of poly(vinyl chloride). J. Appl. Polym. Sci., 102, 1366-1373 (2006). https://doi.org/10.1002/app.24132
  28. N. Lardjane and N. Belhaneche-Bensemra, Migration of additives in simulated landfills and soil burial degradation of plasticized PVC, J. Appl. Polym. Sci., 111, 525-531 (2009). https://doi.org/10.1002/app.29104
  29. J. Kastner, D. G. Cooper, M. Maric, P. Dodd, and V. Yargeau, Aqueous leaching of di-2-ethylhexyl phthalate and "green" plasticizers from poly(vinyl chloride), Sci. Total Environ., 432, 357-364 (2012). https://doi.org/10.1016/j.scitotenv.2012.06.014