• Title/Summary/Keyword: epistemic understanding

Search Result 40, Processing Time 0.027 seconds

Korean Middle School Students' Epistemic Ideas of Claim, Data, Evidence, and Argument When Evaluating and Critiquing Arguments (한국 중학생들의 주장, 자료, 근거와 과학 논의에 대한 인식론적 이해조사)

  • Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.2
    • /
    • pp.199-208
    • /
    • 2015
  • An enhanced understanding of the nature of scientific knowledge-what counts as a scientific argument and how scientists justify their claims with evidence-has been central in Korean science instruction. However, despite its importance, scholars are generally concerned about the difficulty of both addressing and improving students' epistemic understanding, especially for students of a young age. This study investigated Korean middle school students' epistemic ideas about claim, data, evidence, and argument when they engage in reading both text-based and data-inscription arguments. Compared to previous studies, Korean middle school students show a sophisticated understanding of the role of claim and evidence. Yet, these students think that there is only a single way of interpreting data. When comparing students' ideas from text-based and data-inscription arguments, the majority of Korean students barely perceive text description as evidence and recognize only measured data as evidence.

Practical Epistemology Analysis on Epistemic Process in Science Learning (과학 학습의 지식구성 과정에 대한 실제적 인식론 분석)

  • Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.173-187
    • /
    • 2018
  • The purpose of this study is to clarify the specific terms of epistemic and epistemological by reviewing the literature on epistemological understanding of science learning, examine the necessity of epistemic discourse analysis based on the view of social epistemology, and provide an exemplar of practical epistemology analysis for elementary children's science learning. The review was conducted in terms of meaning and terminology about epistemic or epistemological approach to science learning, epistemology of/for science, and methodologies for epistemic discourse analysis. As an alternative way of epistemic discourse analysis in science classroom I employed practical epistemology analysis (by Wickman), evidence-explanation continuum (by Duschl), and DREEC diagram (by Maeng et al.). The methods were administered to an elementary science class for the third grade where children observed sedimentary rocks. Through the outcomes of analysis I sought to understand the processes how children collected data by observation, identified evidence, and constructed explanations about rocks. During the process of practical epistemology analysis the cases of four categories, such as encounter, stand-fast, gap, and relation, were identified. The sequence of encounter, stand fast, gap, and relation showed how children observed sedimentary rocks and how they came to learn the difference among the rocks. The epistemic features of children's observation discourse, although different from scientists' discourses during their own practices, showed data-only conversation, evidence-driven conversation, or explanation inducing conversation. Thus I argue even elementary children are able to construct their own knowledge and their epistemic practices are productive.

Exploring the Epistemic Actions in Pre-service Teachers' Tasks

  • Jihyun Hwang
    • Research in Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • This study analyzes the tasks selected and implemented by pre-service mathematics teachers to support students' development of epistemic actions. Data was collected from 20 students who participated in a mathematics education curriculum theory course during one semester, and multiple data sources were used to gather information about the microteaching sessions. The study focused on the tasks selected and demonstrated during microteaching by pre-service teachers. The results suggest that providing students with a variety of learning opportunities that engage them in different combinations of abductive and deductive epistemic actions is important. The tasks selected by pre-service teachers primarily focused on understanding concepts, calculation, and reasoning. However, the use of engineering tools may present challenges as it requires students to engage in two epistemic actions simultaneously. The study's findings can inform the development of more effective approaches to mathematics education and can guide the development of teacher training programs.

A Critical Examination of Shapin's Social Constructivism (세이핀의 사회구성주의에 대한 비판적 고찰)

  • Rhee Young-Eui
    • Journal of Science and Technology Studies
    • /
    • v.2 no.2 s.4
    • /
    • pp.123-143
    • /
    • 2002
  • The purpose of the paper is to examine the validity of social constructivism embodied in Shapin's case study of Boyle's air pump as a typical case study of the sociology of scientific knowledge. I shall argue that scientific activity has not only epistemic dimension but also non-epistemic dimension, and that social constructivism has put too much emphasis on non-epistemic social dimension such that it cannot provide any balanced understanding of scientific knowledge. I shall first examine the epistemic dimension of the debate between Boyle and Hobbes about air pump, then examine Shapin's view emphasizing epistemic one. Finally I consider some limits of social constructivism shown in Shapin's view.

  • PDF

Analysis of Epistemic Thinking in Middle School Students in an Argument-Based Inquiry(ABI) Science Class (논의기반 탐구(ABI) 과학수업에서 나타나는 중학생들의 인식론적 사고 분석)

  • Park, Jiyeon;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.337-348
    • /
    • 2019
  • The purpose of this study is to examine epistemic thinking in middle school students in an argument-based inquiry science class. Participants of the study were 93 9th grade students from four classes of a middle school in a metropolitan city. Observations were made over one semester during which argument-based inquiry lessons on five subjects were conducted. Data was collected from argument-based inquiry activity worksheets and student questionnaires. After analysis of epistemic thinking in the written reflections, students were found to have the highest frequency of epistemic metacognitive skills, followed by epistemic cognition, epistemic metacognitive experience, and epistemic metacognitive knowledge. While investigating the effects of an argument-based inquiry science class on student epistemic thinking and after analysis of the reflections written for the first ABI activity and the fifth ABI activity, we found that all of the sub-elements of epistemic thinking have increased. The rate of growth for epistemic cognition is greatest, followed by epistemic metacognitive knowledge and epistemic metacognitive skills. Assessed for epistemic thinking, the level of epistemic thinking improved over the course of the argument-based inquiry science class. The results of the survey show that students actively participating and being recognized for their active participation in the argument-based inquiry science class are helpful in understanding scientific knowledge. Therefore, an argument-based inquiry science class is a teaching and learning program that allows students to understand and experience the epistemic nature of scientific knowledge and its construction through collaboration and agreement.

Exploring Epistemic Considerations in Small Group Science Argumentation of Elementary Students (초등학생들의 소집단 과학 논의 활동에 나타나는 인식적 고려사항 탐색)

  • Choi, Hyeon-Gyeong;Kim, Hyo-Nam
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.1
    • /
    • pp.59-72
    • /
    • 2019
  • The purpose of this study is to show that epistemic considerations can be used meaningfully in the argumentation of elementary students, and to provide data on students' epistemic considerations that will be the basis for designing and evaluating scientific argumentation. The epistemic considerations in students' small group argumentations were explored based on Epistemic Considerations in Students' Epistemologies in Practice: EIP' suggested by Berland et al. (2016). The major results of this study are as follows: First, epistemic considerations in elementary school students' small group argumentation appeared in all four aspects: Nature, generality, justification and audience. The epistemic considerations varied according to context in each discussion situation. Second, epistemic considerations did not exist independently. They influenced each other and helped to reveal new types of considerations. The results of this study confirmed that argumentation can be used in elementary school science class. Understanding how students are involved in argumentation and how these epistemic considerations can affect students' argumentation can be helpful to teachers who design and evaluate small group argumentation. Students' achievement level affected epistemic considerations but learning approach types did not affect on. In addition, epistemic considerations may have a positive or negative effect on each other depending on the discussion situation in the process of interaction. So consideration of normative argumentation rules and teaching strategies should be considered in order for epistemic considerations to positively affect each other.

Exploring Pre-Service Science Teachers' Positioning and Epistemic Understanding in a Course about Designing Inquiry-Based Lessons (탐구 수업 설계 강좌에서 예비 중등 과학 교사의 위치짓기와 인식적 이해 탐색)

  • Ha, Heesoo;Kang, Eunhee;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.307-320
    • /
    • 2020
  • This study explores how the positioning of two pre-service science teachers (PSTs) is reflected in their different epistemic understandings of inquiry-based lessons. We collected the PSTs' products during their design and enactment of an inquiry-based lesson and recorded their practices in the enacted lesson. Interviews were recorded and transcribed for analysis. The results indicate that one PST, Dohyung was positioned as a subject of evaluation throughout the course and the other, Jinwoo, was positioned as a preservice teacher and a subject of evaluation. Their positions were reflected in their epistemic understandings of inquiry-based lessons, which were developed when designing these lessons. During lesson design, both PSTs showed a shared understanding; they explained inquiry-based lessons as students setting and evaluating hypotheses under teachers' guidance. However, as they faced unexpected situations during lesson enactment, they developed different epistemic understandings. To receive a good grade, Dohyung showed a strong preference for anticipating situations that could occur in class and planning responses to them. He understood inquiry-based lessons as ones in which students conduct experiments to produce results expected by the teacher. On the other hand, Jinwoo emphasized the reasoning process based on students' prior knowledge and explained inquiry-based lessons as ones in which students construct new knowledge through a scientific reasoning process based on their knowledge. The findings of this study will contribute to developing strategies to support PSTs' development of their epistemic understandings of knowledge construction in inquiry-based lessons.

Understanding of Science Classrooms in Different Countries through the Analysis of Discourse Modes for Building 'Classroom Science Knowledge' (CSK)

  • Oh, Phil Seok;Campbell, Todd
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.3
    • /
    • pp.597-625
    • /
    • 2013
  • This study explored how teachers and students in different countries discursively interact to build 'Classroom Science Knowledge' (CSK) - the knowledge generated situatedly in the context of the science classroom. Data came from publicly released $8^{th}$ grade science classroom videos of five nations who participated in the Third TIMSS (Trend in International Mathematics and Science Study) video study. A total of ten video-recorded science lessons and their verbatim transcripts were selected and analyzed using a framework developed by the researchers of the study. It was revealed that a range of discourse modes were utilized and these modes were often sequentially connected to build CSK in the science classrooms. Although dominant discourse modes and their sequences varied among different lessons or different countries, the study identified three salient patterns of science classroom discourse: teacher-guided negotiation and the sequences of exploring - building on the shared and retrieving - elaborating. These patterns were found to be different from the discursive features commonly witnessed in the community of professional scientists and interpreted as implying the existence of unique epistemic cultures shared in science classrooms of different countries. Further studies are suggested to reveal detailed characteristics of these epistemic cultures of science classrooms, as well as to confirm whether any cultural traits inherently shape the differences in science classroom discourse among different nations.

A Study on the Analysis of Teachers' Questions in the Korean Classroom for Academic Purposes-Focusing on Problem-Based Instruction (학문 목적 교양 한국어 수업에서의 교사 질문 분석 연구 -문제 중심 수업을 중심으로-)

  • Kong, Harim
    • Journal of Korean language education
    • /
    • v.29 no.3
    • /
    • pp.1-24
    • /
    • 2018
  • The purpose of this study was to analyze teachers' questions in the actual general Korean classroom for academic purposes and identify types of questions. The results of the question analysis by type identified 713 teacher's questions in total: echoic questions made up 41% while epistemic questions were 19.3% and expended question turned out to make up 39.7%. 'Comprehension check questions' were 29%, which was a major part in the echoic question. 'Referential questions' were a major part in the epistemic question. Also, the research discovered that 'knowledge integration' questions held the largest majority in expended questions. Since the teacher-led lecture was often conducted in the problem-presentation stage, the percentage of Echoic question was high; and moreover, the problem-solving stage promoted to come up with more improved solutions of the problem. In the outcome and presentation stage, it was discovered that the questions aimed to check understanding of content in the subject and expand thoughts. Therefore, it is necessary to develop strategies for teacher's questions by phase and further conduct research on the interaction between learners and teacher's questions in the future.