• Title/Summary/Keyword: enzyme stability

Search Result 660, Processing Time 0.02 seconds

A Study on Stability of Nitrile Hydratase of Brevibacterium sp. CHI Under the Various Conditions (여러가지 조건하에서 Brevibacterium sp. CH1의 Nitrile Hydratase의 안정성)

  • 황준식;장호남
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.56-60
    • /
    • 1990
  • A bacterial strain of Brevibacterium sp. CHI was isolated from soil and used to produce an enzyme (nitrile hydratase) necessary for carrying out the bioconversion of acrylonitrile to acrylamide. Various immobilization methods and enzyme stability were investigated. The nitrile hydratase showed the maximum stability at pH 7 for the free cells. EDTA and phenyl methyl sulfonyl fluoride were selected as the protease inhibitor and the enzyme stability was evaluated by changing inhibitor concentration. Acrylamide beads were the best carriers among four carriers we tested in terms of stability and physicoehemical strength. The storage stability of the immobilized cells decreased with increasing acrylamide concentration of the gel phase at 4$^{\circ}C$, and was very low at acrylarnide concentration above 25%.

  • PDF

Activity and Stability of Immobilized Enzyme on Silk Sericin Bead

  • Oh, Hanjin;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.329-332
    • /
    • 2013
  • In present preliminary report, we showed the possibility of silk sericin (SS) in enzyme immobilization. SS beads were prepared and enzymes were immobilized on it. The specific activity of immobilized a-chymotrypsin retained more than 87% compared to the free enzyme. The immobilized a-chymotrypsin has better stability against ethanol especially those immobilized on SS beads coagulated in methanol. Immobilized trypsin and lipase had also comparable apparent activity compared to free enzyme. Our result indicates that SS could be a good candidate for enzyme immobilization support due to its hydrophilicity.

In the presence of organic solvent stability of CiP [coprinus cinereus peroxidase] (유기용매에서의 CiP [coprinus cinereus peroxidase]의 안정성)

  • Kim, Han-Sang;Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.340-344
    • /
    • 2008
  • Coprinus cinereus peroxidase (CiP) was often used as a catalyst for oxidative polymerization of a variety of phenol derivatives to produce a new class of polyphenols. Economical point of view, to know the mechanism of enzyme deactivation is significantly important because cost of enzyme is critically high. Hydrogen peroxide being used as oxidizing agent induced deactivation of peroxidase by destruction of heme structure. In the presence of hydrogen peroxide the stability of peroxidase was unexpectedly improved by adding organic solvent. Especially 2-propanol significantly improved enzyme stability among tested solvents. Radical scavenging by organic solvents may play a major role in protecting peroxidase from the oxidation of oxidizing radicals.

The Effect of Potato Lipoxygenase on the Farinograph Characteristics of Wheat Flour Dough (감자 Lipoxygenase 가 밀가루 반죽의 페리노그라프 특성에 미치는 영향)

  • 문정원;서명자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.110-115
    • /
    • 1994
  • To investigate the effect of potato lipoxygenase on the farinograph characteristics of wheat flour dough, composite flours containing enzyme-active potato flor (EPF) and hot-ar dried potato flour(HPF) were used. EPF was made by freeze-drying potato tuber. DPF (denaturated potato flour) was prepared by holding EPF at 8$0^{\circ}C$ for 18 hr in a dry oven. The potato flours were added to wheat flour at a level of 10% , respectivley. EPFB (enzyme-active potato flour blends, 90% wheat flour +105 enzyme -active potato flour) containing lipoxygenase activity gave higher farinogram peak time and higher stability values, lower MTI (mixing tolerance index ) and lower weakness values than those of HPFB(hot-air potato flour blends, 90% wheat flour + 10 % hot-air potato flour). Moreover, then lipoxygenase was added to DPFB(denatured potato flour blends , 90% wheat flour + 10% denatured potato flour) at a level of EPFB, it resulted in increasing stability, peak time and decreasing MTI , weakness at a level of EPFB. When the lipoxugenase was added to wheat flour with fumaric acid at alevel of 6.5 $\times$ 10units/g flour, lipoxygenase overcame the deleterious effects that fumaric acid including activated double-bond compounds have at mixing stability. Also the addition of liposxygenase with linoleic acid to defatted wheat flour resulted in the increase in stability and decrease in MTI value compared with those of linoleic acid and defatted wheat flour.

  • PDF

Improved Immobilized Enzyme Systems Using Spherical Micro Silica Sol-Gel Enzyme Beads

  • Lee, Chang-Won;Yi, Song-Se;Kim, Ju-Han;Lee, Yoon-Sik;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for the in situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.

Chemically Modified Sepharose as Support for the Immobilization of Cholesterol Oxidase

  • Yang, Hailin;Chen, Yi;Xin, Yu;Zhang, Ling;Zhang, Yuran;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1212-1220
    • /
    • 2013
  • Because the cholesterol oxidase from Brevibacterium sp. M201008 was not as stable as the free enzyme form, it had been covalently immobilized onto chemically modified Sepharose particles via N-ethyl-N'-3-dimethylaminopropyl carbodiimide. The optimum immobilization conditions were determined, and the immobilized enzyme activity obtained was 12.01 U/g Sepharose-ethylenediamine. The immobilization of the enzyme was characterized by Fourier transform infrared spectroscopy. The immobilized enzyme exhibited the maximal activity at $35^{\circ}C$ and pH 7.5, which was unchanged compared with the free form. After being repeatedly used 20 times, the immobilized enzyme retained more than 40.43% of its original activity. The immobilized enzyme showed better operational stability, including wider thermal and pH ranges, and retained 62.87% activity after 20 days of storage at $4^{\circ}C$, which was longer than the free enzyme.

Stability and Modification of Aspergillus awamori $\alpha$-Glucosidase with $IO_4$-oxidized Soluble Starch (과요오드산-산화 가용성 전분에 의한 Aspergillus awamori $\alpha$-Glucosidase의 안정성 및 변형)

  • Ann Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.4-10
    • /
    • 2005
  • Periodate-oxidized soluble starch increased pH stability of Aspergillus awamori a-glucosidase. After incubation for two hours, the enzyme in the absence of oxidized soluble starch was stable in the range of pH 3-7 at 40℃, pH 3-6 at 50℃ and the enzyme in the presence of oxidized soluble starch was stable in the range of pH 3-9 at 40℃, pH 3-8 at 50℃. At 60℃, the enzyme was stable in pH 3-6 regardless of the presence or absence of IO₄-oxidized soluble starch, but when IO₄-oxidized soluble starch existed in pH 5-6, remained activity of the enzyme increased 20% more than when it didn't exist. The enzyme modified with IO₄-oxidized soluble starch remained 70% of activity in pH 9, but native enzyme didn't remain, showing the increase of stability due to modification. In thermal stability, modified enzyme remained 12% at 50℃ and 7% at 80℃. But native enzyme remained 8% at 50℃ and didn't remain at more than 70℃. The result of HPLC analysis revealed the subunit of the enzyme at under pH 2 or over pH 9 was separated or the enzyme was denatured and conjugated. Protein structure of native enzyme was denatured by acidic and basic pH but was stable in the presence of IO₄-oxidized soluble starch.

Reactivity and Stability of Lignostilbene-$\alpha$, $\beta$-Dioxygenase-I in Various pHs, Temperatures, and in Aqueous Organic Solvents

  • Makoto, Niwa;Kamoda, Shigehiro;Saburi, Yoshimasa
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.884-886
    • /
    • 2001
  • The reactivity and stability of purified Lignostilbene- ${\alpha}$,${\beta$}-dioxygenase (LSD)-I were examined. Its optimum temperature was $50^{\circ}C$ at pH 8.5, but it was stable only up to $30^{\circ}C$. The activity of LSD-I increased 12-fold by $30\%$, with increased $V_{max}$ and lowered $K_m.$ LSD-I was stable in 10% methanol.

  • PDF

Activity and stability of purified amylase produced by streptomyces aureofaciens 77

  • Ibrahim, A.N.;Ahmed, F.H.;Ibrahim, M.M.K.;Arafa, M.A.I.
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.33-37
    • /
    • 1990
  • The effects of pH values, temperature and some elements on the amylolytic activity and stability of the purified S. aureofacienc 77 amylase were studied in this investigation. The purified enzyme showed its maximum activity at pH 6 within 8 min incubation at $40^{\circ}C$. None of the tested 6 metals showed on stimulatory effect on the enzymatic activity, $Fe^{+++}$, $Cu^{++}$ and $Hg^{++}$ at high dose inhibited the enzyme activity to great extent as compared with $Zn^{++}$, $Mn^{++}$ and $Fe^{++}$ whih gave less effect in this respect. The enzyme liquor was found to be thermolabile, since it lost completely its activity after 4 days incubation under room temperature and showed maximum activity during this period as a result of additions of $Ca^{++}$and NaCl, Gradual reduction was however recorded until activity reached 30% after 60 days of incubation.

  • PDF

Hydrolysis of Egg Yolk Protein in a Packed Bed Reactor by Immobilized Enzyme (충진층 반응기에서 고정화 효소에 의한 난황 단백질의 가수분해)

  • Kang, Byung-Chul
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1656-1661
    • /
    • 2010
  • Alkaline protease for the hydrolysis of egg yolk protein was immobilized on five carriers - Duolite A568, Celite R640, Dowex-1, Dowex 50W and Silica gel R60. Duolite A568 showed a maximum immobilization yield of 24.7%. Optimum pH for the free and immobilized enzyme was pH 8 and 9, respectively. However, no change was observed in optimum temperature ($50^{\circ}C$). Thermal stability was observed in immobilized enzymes compared to free enzymes. The immobilized enzyme retained 86% activity after 10 cycle operations in a repeated batch process. The effect of flow rate on the stability of enzyme activity in continuous packed-bed reactor was investigated. Lowering flow rate increased the stability of the immobilized enzyme. After 96 hr of continuous operation in a packed-bed reactor, the immobilized enzyme retained 83 and 61% activity when casein and egg yolk were used as a raw materials, respectively.