Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.11.1656

Hydrolysis of Egg Yolk Protein in a Packed Bed Reactor by Immobilized Enzyme  

Kang, Byung-Chul (Department of Chemical Engineering, Dong-Eui University)
Publication Information
Journal of Life Science / v.20, no.11, 2010 , pp. 1656-1661 More about this Journal
Abstract
Alkaline protease for the hydrolysis of egg yolk protein was immobilized on five carriers - Duolite A568, Celite R640, Dowex-1, Dowex 50W and Silica gel R60. Duolite A568 showed a maximum immobilization yield of 24.7%. Optimum pH for the free and immobilized enzyme was pH 8 and 9, respectively. However, no change was observed in optimum temperature ($50^{\circ}C$). Thermal stability was observed in immobilized enzymes compared to free enzymes. The immobilized enzyme retained 86% activity after 10 cycle operations in a repeated batch process. The effect of flow rate on the stability of enzyme activity in continuous packed-bed reactor was investigated. Lowering flow rate increased the stability of the immobilized enzyme. After 96 hr of continuous operation in a packed-bed reactor, the immobilized enzyme retained 83 and 61% activity when casein and egg yolk were used as a raw materials, respectively.
Keywords
Enzyme immobilization; egg yolk protein; packed-bed reactor; continuous operation; repeated batch;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Puhl, A. C., C. Giacomini, G. Irazoqui, F. Batista-Viera, A. Villarino, and H. Terenzi. 2009. Covalent immobilization of tobacco-etch-virus NIa protease: a useful tool for cleavage of the histidine tag of recombinant proteins. Biotechnol. Appl. Biochem. 53, 165-174.   DOI
2 Roy, I. and M. N. Gupta. 2003. Lactose hydrolysis by Lactozym immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem. 39, 325-332.   DOI
3 Sharma, S., A. Mittal, V. K. Gupta, and H. Singh. 2007. Improved stabilization of microencapsulated Cathepsin B in harsh conditions. Enzyme Microb. Technol. 40, 337-342.   DOI
4 Silva, C., G. Gubitz, and A. Cavaco-Paulo. 2006. Optimization of a serine protease coupling to Eudragit S-100 by experimental design techniques. J. Chem. Technol. Biotechnol. 81, 8-16.   DOI
5 Silva, C., Q. Zhang, J. Shen, and A. Cavaco-Paulo. 2006. Immobilization of proteases with a water soluble/insoluble reversible polymer for treatment of wool. Enzyme Microb. Technol. 39, 634-640.   DOI
6 Wang, S., H. Bao, P. Yang, and G. Chen. 2008. Immobilization of trypsin in polyaniline-coated nano-Fe3O4 /carbon nanotube composite for protein digestion. Anal. Chim. Acta 612, 182-189.   DOI   ScienceOn
7 Yu, X., Y. Li, C. Wang, and D. Wu. 2004. Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristic. Biotechnol. Appl. Biochem. 40, 151-155.   DOI
8 Haider, T. and Q. Husain. 2008. Concanavalin A layered calcium alginate–starch beads immobilized ${\beta}$-galactosidase as a therapeutic agent for lactose intolerant patients. Int. J. Pharm. 359, 1-6.   DOI   ScienceOn
9 Hong, J., P. Gong, D. Xu, L. Dong, and S. Yao. 2007. Stabilization of ${\alpha}$-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel. J. Biotechnol. 128, 597-605.   DOI
10 Juneja, L. R., M. Koketsu, K. Nishimoto, M. Kim, T. Yamamoto, and T. Itoh. 1991. Large-scale preparation of sialic acid from chalaza and egg-yolk membrane. Carbohydr. Res. 214, 179-183.   DOI
11 Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
12 Mannheim, A. and M. Cheryan. 1981. Continous hydrolysis of milk protein in a membrane reactor. J. Food Sci. 55, 381-385.
13 Potumarthi, R., C. Subhakar, A. Pavani, and A. Jetty. 2008. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods. Bioresour. Technol. 99, 1776-1786.   DOI
14 Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451-1463.   DOI
15 Ortega, N., M. Perez-Mateos, M. C. Pilar, and M. D. Busto. 2009. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J. Agric. Food Chem. 57, 109-115.   DOI
16 Parkinson, T. L. 1966. The chemical composition of eggs. J. Sci. Food Agric. 17, 101-106.   DOI
17 Ahmed, S. A., S. A. Saleh, and A. F. Abdel-Fattah. 2007. Stabilization of Bacillus licheniformis ATCC 21415 alkaline protease by immobilization and modification. Aust. J. Basic Appl. Sci. 1, 313-322.
18 Altun, G. D. and S. A. Cetinus. 2007. Immobilization of pepsin on chitosan beads. Food Chem. 100, 964-971.   DOI
19 Bayramoglu, G., M. Yılmaz, A. U. Senel, and M. Y. Arica. 2008. Preparation of nanofibrous polymer grafted magnetic poly (GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption. Biochem. Eng. J. 40, 262-274.   DOI   ScienceOn
20 Benkhelifa, J., C. Bengoa, C. Larre, E. Guibal, Y. Popineau, and J. Legrand. 2005. Casein hydrolysis by immobilized enzymes in a torus reactor. Process Biochem. 40, 461-467.   DOI
21 Cao, L. 2005. Immobilized enzymes: science or art. Curr. Opin. Chem. Biol. 9, 217-226.   DOI
22 Gea, S., H. Bai, H. Yuan, and L. Zhang. 1996. Continuous production of high degree casein hydrolysates by immobilized proteases in column reactor. J. Biotechnol. 50, 161-170.   DOI   ScienceOn
23 Greenberg, D. M. 1957. Plant proteolytic enzymes. Methods Enzymol. 2, 54-64.
24 Gutierrez, M. A., T. Mitsuya, H. Hatta, M. Koketsu, R. Kobayashi, L. R. Juneja, and M. Kim. 1998. Comparison of egg-yolk protein hydrolysate and soybean protein hydrolysate in terms of nitrogen utilization. Br. J. Nutr. 80, 477-484.