• Title/Summary/Keyword: enzymatic catalysis

Search Result 30, Processing Time 0.023 seconds

Regioselective Enzymatic Acylation of Multi-hydroxyl Compounds in Organic Synthesis

  • Park, Hyun-Gyu;Do, Jin-Hwan;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • With current developments in enzyme-catalyzed reactions and techniques available for rational redesign of natural biocatalysts, the enzymatic biosynthesis can become one of the most valuable Synthetic methods. Enzymatic regioselective catalysis in organic media has played a key role in pursuing asymmetric synthesis for active chiral compounds. Here, we shortly do-scribe some historical issues of the rapidly growing area, enzymatic catalysis in synthetic organic chemistry and then review researches that have been carried out in the regioselective enzymatic catalysis for the past two decades. An application of this technology to the modification of some potential target drug co m pound will be adios presented.

Enzymatic synthesis of ester-linked conjugates of amino acid and monosaccharide

  • Jeon, Gyu-Jong;Park, O-Jin;Sin, Mun-Sik;Yang, Ji-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.597-600
    • /
    • 2000
  • In this study the enzymatic synthesis of ester-linked conjugates of amino acid and monosaccharide in pyridine was tested by the catalysis of Optimase M-440, an alkaline serine pretense. Optimase M-440 showed the higher activity in the reaction of monosaccharides which have one or more primary -OH groups. And also Optimase M-440 showed high regioselectivity; The transesterification of primary -OH group selectively occurred.

  • PDF

Effects of Structural Difference of Ionic Liquids on the Catalysis of Horseradish Peroxidase

  • Hong, Eun-Sik;Park, Jung-Hee;Yoo, Ik-Keun;Ryu, Keun-Garp
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.713-717
    • /
    • 2009
  • The dependence of the catalytic properties of horseradish peroxidase on the structural changes of ionic liquids was investigated with two water-miscible ionic liquids, N-butyl-3methypyridinium tetraftuoroborate ([$BMP_y$][$BF_4$]) and 1-butyl-3-methylimidazolium methylsulfate ([BMIM][$MeSO_4$]), each of which shares an anion ($BF_4^-$) or a cation ($BMIM^+$) with 1-butyl-3-methylimidazolium tetraftuoroborate ([BMIM][$BF_4$]), respectively. The oxidation of guaiacol (2-methoxyphenol) with $H_2O_2$was used as a model reaction. In order to minimize the effect of solution viscosity on the kinetic constants of the enzymatic catalysis, the enzymatic reactions for the kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. Similarly to the previously reported results for [BMIM][$BF_4$], as the concentration of [$BMP_y$][$BF_4$] increased, the $K_m$value increased with a decrease in the $k_{cat}$value: the $K_m$value increased markedly from 2.8 mM in 100% water to 12.6 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to the enzyme. On the contrary, [BMIM][$MeSO_4$] decreased the Km value to 1.4 mM in 25% (v/v) ionic liquid. [BMIM][$MeSO_4$] also decreased $k_{cat}$more than 3-folds [from 13.8 $s^{-1}$in 100% water to 4.1 $s^{-1}$in 25% (v/v) ionic liquid]. These results indicate that the ionic liquids interact with the enzyme at the molecular level as well as at a macroscopic thermodynamic scale. Specifically, the anionic component of the ionic liquids influenced the catalysis of horseradish peroxidase in different ways.

ONIOM and Its Applications to Material Chemistry and Catalyses

  • Morokuma, Keiji
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.797-801
    • /
    • 2003
  • One of the largest challenges for quantum chemistry today is to obtain accurate results for large complex molecular systems, and a variety of approaches have been proposed recently toward this goal. We have developed the ONIOM method, an onion skin-like multi-level method, combining different levels of quantum chemical methods as well as molecular mechanics method. We have been applying the method to many different large systems, including thermochemistry, homogeneous catalysis, stereoselectivity in organic synthesis, solution chemistry, fullerenes and nanochemistry, and biomolecular systems. The method has recently been combined with the polarizable continuum model (ONIOM-PCM), and was also extended for molecular dynamics simulation of solution (ONIOM-XS). In the present article the recent progress in various applications of ONIOM and other electronic structure methods to problems of homogeneous catalyses and nanochemistry is reviewed. Topics include 1. bond energies in large molecular systems, 2. organometallic reactions and homogeneous catalysis, 3. structure, reactivity and bond energies of large organic molecules including fullerenes and nanotubes, and 4. biomolecular structure and enzymatic reaction mechanisms.

Identification of Enzymatic Catalysis of PncA using 1H-NMR

  • Yi, Jong-Jae;Kim, Won-Je;Rhee, Jin-Kyu;Lim, Jongsoo;Lee, Bong-Jin;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.85-89
    • /
    • 2017
  • Pyrazinamidase (PncA) from Mycobacterium tuberculosis is the hydrolytic enzyme (hydrolase) that can hydrolyze substrate PZA to active form pyrazoic acid (POA). To investigate hydrolytic reaction of M. tuberculosis PncA, 1D NMR spectra were monitored at various molar ratios of PncA and PZA. The line-width of PZA was changed as PncA was added into PZA with different molar ratios. These results suggested that determination of PncA enzymatic activity could potentially serve as an indirect measure of PZA susceptibility.

Development of Novel Pyrrolidine Organocatalyst

  • Im, Seol-Hui;Gang, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.198-198
    • /
    • 2011
  • Organocatalysis is a relatively new and popular area within the field of chiral molecule synthesis. It is one of the main branches of enantioselective synthesis with enzymatic and organometallic catalysis. In recent years, immense high quality studies on catalysis by chiral secondary amines were reported. These progresses instantly led to different organocatalytic activation concepts, so thousands of researchers from academia and the chemical industry are currently involved in this field and new ideas, new approaches, and creative thinking have been rapidly emerged. Organocatalysts, some of which are natural products, appear to solve the problems of metal catalysts. Compared to metal-based catalysis, they have many advantages including savings in cost, time, and energy, easier experimental procedure, and reduction of chemical waste. These benefits originate from the following factors. First, organocatalysts are generally stable in oxygen and water in the atmosphere, there is no need for special equipments or experimental techniques to operate under anhydrous or anaerobic conditions. Second, organic reagents are naturally available from biological materials as single enantiomers that they are easy and cheap to prepare which makes them suitable for small-scale to industrial-scale reactions. Third, in terms of safety related catalysis, small organic molecules are non-toxic and environmentally friendly. Therefore, the purpose of this research is to develop novel synthetic methods and design for various organocatalyst. Furthermore, it is expected that these organocatalysts can be applied to a variety of asymmetric reactions and study the transition state of these reactions using a metal sulface. Here, we report the synthesis of unprecedented organocatalysts, proline and pyrrolidine derivatives with quaternary carbon center.

  • PDF

Effect of Ionic Liquid on the Kinetics of Peroxidase Catalysis

  • Lee, Yoon-Mi;Kwon, O-Yul;Yoo, Ik-Keun;Ryu, Keun-Garp
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.600-603
    • /
    • 2007
  • The effect of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate $([BMIM][BF_4])$, on the horseradish peroxidase (HRP)-catalyzed oxidation of 2-methoxyphenol (guaiacol) with hydrogen peroxide $(H_2O_2)$ was investigated. HRP maintains its high activity in the aqueous mixtures containing various concentrations of the ionic liquid and even in 90% (v/v) ionic liquid. In order to minimize the effect of solution viscosity on the kinetic constants of HRP catalysis, the enzymatic reactions in the subsequent kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. As the concentration of $[BMIM][BF_4]$ increased for the oxidation of guaiacol by HRP, the $K_m$ value increased with a slight decrease in the $K_{cat}$ value: The $K_m$ value increased from 2.8 mM in 100% (v/v) water to 22.5mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to HRP.

Enzymatic Biodiesel Synthesis of Waste Oil Contained High Free Fatty Acid (효소 촉매를 이용한 고산가 폐유지 유래 바이오디젤 합성)

  • Jeon, Cheol-Hwan;Lim, Kwang-Mook;Kim, Jae-Kon;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1048-1056
    • /
    • 2018
  • Non-edible oil sources (i.e., Palm Acid Oil, waste animal fat) usually contain relatively high amount of free fatty acids (FFA) that make them inadequate for direct base catalyzed transesterification reaction. Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification, and has certain advantages over the chemical catalysis of transesterification, as it is less energy intensive, allows easy recovery of glycerol and the transesterification of glycerides with high free fatty acid contents. In this study, we synthesized biodiesel through enzymatic catalyzed process using high free fatty acid containing waste oil in biodiesel reactor (1 ton/day) and optimized the biodiesel production processes.

Modeling the Catalytic Activity and Kinetics of Lipase(Glycerol-Ester Hydrolase)

  • Demirer, Goksel N.;Duran, Metin;Tanner, Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • In order to design industrial scale reactors and proceises for multi-phase biocatalytic reactions, it is essential to understand the mechanisms by which such systems operate. To il-lustrate how such mechanisms can be modeled, the hydrolysis of the primary ester groups of triglycerides to produce fatty acids and monoglycerides by lipased (glycerol-ester hydrolase) catalysis has been selected as an example of multiphase biocatalysis. Lipase is specific in its behavior such that it can act only on the hydrolyzed (or emulsified) part of the substrate. This follows because the active center of the enzyme is catalytically active only when the substrate contacts it in its hydrolyzed form. In other words, lipase acts only when it can shuttleback and forth between the emulsion phase and the water phase, presumably within an interphase or boundary layer between these two phases. In industrial applications lipase is employed as a fat splitting enzyme to remove fat stains from fabrics, in making cheese, to flavor milk products, and to degrade fats in waste products. Effective use of lipase in these processes requires a fundamental understanding of its kinetic behavior and interactions with substrates under various environmental conditions. Therefore, this study focuses on modeling and simulating the enzymatic activity of the lipase as a step towards the basic understanding of multi-phase biocatalysis processes.

  • PDF

Effect of Tween 80 on Hydrolytic Activity and Substrate Accessibility of Carbohydrolase I (CBH I) from Trichoderma viride

  • Kim, Wanjae;Gamo, Yuko;Sani, Yahaya Mohammed;Wusiman, Yimiti;Ogawa, Satoru;Karita, Shuichi;Goto, Masakazu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.684-689
    • /
    • 2006
  • The present study examined the effects of Tween 80 on the attachment and hydrolytic activity of a cellulase enzyme against ball-milled cellulose (BMC), using the whole component (native CBH I) and the catalysis module (core CBH I) of carbohydrolase I purified from Trichoderma viride (Meicelase, Meiji Seika, Tokyo, Japan). The effects were evaluated as protein concentrations in the supernatant after mixing enzyme and substrate with Tween 80 at room temperature. Tween 80 decreased the adsorption of native CBH I and core CBH I onto BMC (p<0.001) and increased the amount of reducing sugars released from BMC by native CBH I (p<0.001). However, Tween 80 did not enhance the hydrolytic activity of core CBH I. Observations using SEM revealed that Tween 80 caused cellulose filter paper to swell and enhanced surface cracks and filaments caused by native CBH I but not by core CBH I. These results suggested that Tween 80 decreases enzyme adsorption to its substrate but enhances enzymatic activity.