DOI QR코드

DOI QR Code

ONIOM and Its Applications to Material Chemistry and Catalyses

  • Morokuma, Keiji (Cherry L. Emerson Center for Scientific Computation and Department of Chemistry,Emory University)
  • Published : 2003.06.20

Abstract

One of the largest challenges for quantum chemistry today is to obtain accurate results for large complex molecular systems, and a variety of approaches have been proposed recently toward this goal. We have developed the ONIOM method, an onion skin-like multi-level method, combining different levels of quantum chemical methods as well as molecular mechanics method. We have been applying the method to many different large systems, including thermochemistry, homogeneous catalysis, stereoselectivity in organic synthesis, solution chemistry, fullerenes and nanochemistry, and biomolecular systems. The method has recently been combined with the polarizable continuum model (ONIOM-PCM), and was also extended for molecular dynamics simulation of solution (ONIOM-XS). In the present article the recent progress in various applications of ONIOM and other electronic structure methods to problems of homogeneous catalyses and nanochemistry is reviewed. Topics include 1. bond energies in large molecular systems, 2. organometallic reactions and homogeneous catalysis, 3. structure, reactivity and bond energies of large organic molecules including fullerenes and nanotubes, and 4. biomolecular structure and enzymatic reaction mechanisms.

Keywords

References

  1. Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996, 16,1959.
  2. Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber,S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357. https://doi.org/10.1021/jp962071j
  3. Frisch, M. J. et al. Gaussian 98, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 1998
  4. Frisch, M. J. et al. Gaussian 03, Revision A.1; Pittsburgh, PA, 2003.
  5. Maseras, F. Top. Organomet. Chem. 1999, 4, 165. https://doi.org/10.1007/3-540-69707-1_5
  6. Froese, R. D. J.; Morokuma, K. In The Encyclopedia ofComputational Chemistry; Schleyer, P. v. R.; Allinger, N. L.;Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer III, H. F.;Schreiner P. R., Eds.; John Wiley: Chichester, 1998; p 1245.
  7. Vreven, T.; Morokuma, K. J. Comp. Chem. 2000, 21, 1419.
  8. Froese, R. D. J.; Morokuma, K. J. Phys. Chem. A 1999, 103,4580. https://doi.org/10.1021/jp990704z
  9. Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett. 1999, 305,419. https://doi.org/10.1016/S0009-2614(99)00396-6
  10. Vreven, T.; Morokuma, K. J. Chem. Phys. 1999, 111, 8799. https://doi.org/10.1063/1.480227
  11. Liu, Z.; Torrent, M.; Morokuma, K. Organometallics 2002, 21,1056. https://doi.org/10.1021/om0110843
  12. Khoroshun, D. V.; Musaev, D. G.; Vreven, T.; Morokuma, K.Organometallics 2001, 20, 2007. https://doi.org/10.1021/om010126k
  13. Froese, R. D. J.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc.1998, 120, 1581. https://doi.org/10.1021/ja9728334
  14. Torrent, M.; Vreven, T.; Musaev, D. G.; Morokuma, K.; Farkas,O.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 192. https://doi.org/10.1021/ja016589z
  15. Choi, C. H.; Gordon, M. S. J. Am. Chem. Soc. 1999, 121,11311. https://doi.org/10.1021/ja9914285
  16. Sauer, J.; Sierka, M. J. Comp. Chem. 2000, 21, 1470. https://doi.org/10.1002/1096-987X(200012)21:16<1470::AID-JCC5>3.0.CO;2-L
  17. Ujaque, G.; Maseras, F.; Lledos, A. J. Am. Chem. Soc. 1999, 121, 1317. https://doi.org/10.1021/ja9816335
  18. Feldgus, S.; Landis, C. R. J. Am. Chem. Soc. 2000,122, 12714. https://doi.org/10.1021/ja0019373
  19. Re, S.; Morokuma, K. J. Phys. Chem. A 2001, 105, 7185. https://doi.org/10.1021/jp004623a
  20. Irle, S.; Rubin, Y.; Morokuma, K. J. Phys. Chem. A 2002, 106,680. https://doi.org/10.1021/jp0139282
  21. Vreven, T.; Mennucci, B.; da Silva, C. O.; Morokuma, K.; Tomasi,J. J. Chem. Phys. 2001, 115, 62. https://doi.org/10.1063/1.1376127
  22. Kerdcharoen, T.; Morokuma, K. Chem. Phys. Lett. 2002, 355, 257 https://doi.org/10.1016/S0009-2614(02)00210-5
  23. Kerdcharoen, T.; Morokuma, K. J. Chem. Phys. 2003, 118, 8856. https://doi.org/10.1063/1.1566733

Cited by

  1. vol.87, pp.7, 2009, https://doi.org/10.1139/V09-027
  2. Comparison of β-Sheets of Capped Polyalanine with Those of the Tau-Amyloid Structures VQIVYK and VQIINK. A Density Functional Theory Study vol.115, pp.35, 2011, https://doi.org/10.1021/jp205388q
  3. In silico study of the interstellar prebiotic formation and delivery of glycine vol.22, pp.2, 2011, https://doi.org/10.1007/s12210-011-0122-8
  4. in Fidelity of Initiation of Protein Synthesis vol.30, pp.9, 2011, https://doi.org/10.1080/15257770.2011.605780
  5. Extended Strand Peptides into Antiparallel β-Sheets. A Density Functional Theory Study of β-Sheets with β-Turns vol.116, pp.48, 2012, https://doi.org/10.1021/jp3094947
  6. Reliability of Approximate Methods to Study Tip-Functionalized Single-Wall Carbon Nanotubes vol.116, pp.48, 2012, https://doi.org/10.1021/jp3089947
  7. Unusual Low-Vibrational C═O Mode of COOH Can Distinguish between Carboxylated Zigzag and Armchair Single-Wall Carbon Nanotubes vol.116, pp.49, 2012, https://doi.org/10.1021/jp309699z
  8. A computational investigation of ring-shift isomerization of sym-octahydrophenanthrene to sym-octahydroanthracene catalyzed by acidic zeolites vol.14, pp.48, 2012, https://doi.org/10.1039/c2cp41824j
  9. XO: An extended ONIOM method for accurate and efficient modeling of large systems vol.33, pp.27, 2012, https://doi.org/10.1002/jcc.23051
  10. Density Functional Theory Study of β-Hairpins in Antiparallel β-Sheets, a New Classification Based upon H-Bond Topology vol.51, pp.27, 2012, https://doi.org/10.1021/bi3006785
  11. Assessment of Weak Intermolecular Interactions Across QM/MM Noncovalent Boundaries vol.52, pp.1, 2012, https://doi.org/10.1021/ci200406s
  12. Mechanistic Insights on Organocatalytic Enantioselective Decarboxylative Protonation by Epicinchona-Thiourea Hybrid Derivatives vol.77, pp.23, 2012, https://doi.org/10.1021/jo301483p
  13. ONIOM and ab-initio calculations on the mechanism of uncatalyzed peptide bond formation vol.90, pp.6, 2012, https://doi.org/10.1139/o2012-027
  14. The extended CC2 model ECC2 vol.111, pp.9-11, 2013, https://doi.org/10.1080/00268976.2013.798435
  15. : A Theoretical Study vol.117, pp.10, 2013, https://doi.org/10.1021/jp3116287
  16. Mechanistic investigation of methanol to propene conversion catalyzed by H-beta zeolite: a two-layer ONIOM study vol.19, pp.12, 2013, https://doi.org/10.1007/s00894-013-2030-6
  17. Binding affinity of substituted ureido-benzenesulfonamide ligands to the carbonic anhydrase receptor: A theoretical study of enzyme inhibition vol.34, pp.22, 2013, https://doi.org/10.1002/jcc.23335
  18. Capsule-controlled selectivity of a rhodium hydroformylation catalyst vol.4, pp.2041-1723, 2013, https://doi.org/10.1038/ncomms3670
  19. Polymer drug interactions in thiadiazolylthioacetamide derivatives–linear dendritic copolymer nanoparticles: ONIOM approach vol.43, pp.4, 2013, https://doi.org/10.1007/s40005-013-0074-3
  20. Quantum chemical calculations based on ONIOM and the DFT methods in the inclusion complex: doxycycline/2-O-Me-β-cyclodextrin vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0237-2
  21. Values-Relative Absorption Intensity in Aqueous Solutions vol.89, pp.3, 2013, https://doi.org/10.1111/php.12052
  22. on Cu(100) vol.118, pp.10, 2014, https://doi.org/10.1021/jp4118634
  23. Capping Amyloid β-Sheets of the Tau-Amyloid Structure VQIVYK with Hexapeptides Designed To Arrest Growth. An ONIOM and Density Functional Theory Study vol.118, pp.12, 2014, https://doi.org/10.1021/jp501890p
  24. Can Arrest the Growth of the Sheet, Suggesting a Potential for Curtailing Amyloid Growth. An ONIOM and Density Functional Theory Study vol.53, pp.4, 2014, https://doi.org/10.1021/bi401366w
  25. The ONIOM Method and Its Applications vol.115, pp.12, 2015, https://doi.org/10.1021/cr5004419
  26. QM/MM study of the interaction between zigzag SnC nanotube and small toxic gas molecules vol.116, pp.6, 2015, https://doi.org/10.1002/qua.25055
  27. Theoretical Study of the Adsorption of Alkylamines in H-Mordenite: The Role of Noncovalent Interactions vol.119, pp.15, 2015, https://doi.org/10.1021/jp5122189
  28. Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium-Catalyzed Olefin Epoxidation by Hydrogen Peroxide vol.137, pp.30, 2015, https://doi.org/10.1021/jacs.5b03750
  29. : a theoretical study vol.39, pp.4, 2015, https://doi.org/10.1039/C4NJ02118E
  30. Thioflavin-based molecular probes for application in Alzheimer's disease: from in silico to in vitro models vol.7, pp.1, 2015, https://doi.org/10.1039/C4MT00167B
  31. adsorption on lithium doped single walled armchair and zigzag nanotubes: SiCNT, GeCNT, and SnCNT vol.116, pp.20, 2016, https://doi.org/10.1002/qua.25208
  32. from metal surfaces vol.45, pp.13, 2016, https://doi.org/10.1039/C5CS00336A
  33. Computationally Exploring Confinement Effects in the Methane-to-Methanol Conversion Over Iron-Oxo Centers in Zeolites vol.6, pp.12, 2016, https://doi.org/10.1021/acscatal.6b02640
  34. Solvation Enhances the Distinction between Carboxylated Armchair and Zigzag Single-Wall Carbon Nanotubes (SWNT-COOH) vol.121, pp.17, 2017, https://doi.org/10.1021/acs.jpcc.6b10676
  35. A DFT study of inclusion complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril vol.89, pp.1-2, 2017, https://doi.org/10.1007/s10847-017-0738-0
  36. : A DFT Investigation vol.16, pp.27, 2010, https://doi.org/10.1002/chem.200903348
  37. Binding Studies of Pyriproxyfen to DNA by Multispectroscopic Atomic Force Microscopy and Molecular Modeling Methods vol.31, pp.2, 2012, https://doi.org/10.1089/dna.2011.1303
  38. -Forms vol.86, pp.2, 2013, https://doi.org/10.1246/bcsj.20120113
  39. @Cu(100) surface: Potential and spectroscopy vol.142, pp.5, 2015, https://doi.org/10.1063/1.4907013
  40. Effect of AlH···HO dihydrogen bond on the reaction between diphenylmethanol and pyrazolate-bridged dialuminum complex. An ONIOM DFT/AM1 study vol.108, pp.6, 2007, https://doi.org/10.1002/qua.21573
  41. Unraveling high precision stereocontrol in a triple cascade organocatalytic reaction vol.6, pp.21, 2008, https://doi.org/10.1039/b810901j
  42. A Study of the Binding Energies of Efavirenz to Wild-Type and K103N/Y181C HIV-1 Reverse Transcriptase Based on the ONIOM Method vol.3, pp.5, 2008, https://doi.org/10.1002/cmdc.200700181
  43. Theoretical studies of structure, function and reactivity of molecules—A personal account vol.85, pp.5, 2009, https://doi.org/10.2183/pjab.85.167
  44. Reactivity of CO2 towards Mo[N(R)Ph]3 pp.42, 2009, https://doi.org/10.1039/b909982d
  45. The influence of peripheral ligand bulk on nitrogen activation by three-coordinate molybdenum complexes-A theoretical study using the ONIOM method vol.30, pp.13, 2009, https://doi.org/10.1002/jcc.21199
  46. Implementation and benchmark tests of the DFTB method and its application in the ONIOM method vol.109, pp.9, 2009, https://doi.org/10.1002/qua.22002
  47. Chemical Reaction of Nitric Oxides with the 5-1DB Defect of the Single-Walled Carbon Nanotube vol.110, pp.5, 2003, https://doi.org/10.1021/jp053931b
  48. Computational quantum mechanics: An underutilized tool in thermodynamics vol.79, pp.8, 2007, https://doi.org/10.1351/pac200779081345
  49. A Theoretical Insight into the Interaction of Fatty Acids Involved in Royal Jelly with the Human Estrogen Receptor β vol.81, pp.10, 2008, https://doi.org/10.1246/bcsj.81.1258
  50. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  51. A case study in performance evaluation of Density Functional Tight Binding method in two-layer ONIOM method vol.850, pp.1, 2003, https://doi.org/10.1016/j.theochem.2007.10.038
  52. The effect on acidity of size and shape of carboxylated single-wall carbon nanotubes. A DFT-SLDB study vol.460, pp.1, 2003, https://doi.org/10.1016/j.cplett.2008.06.007
  53. Noncovalent π−π Stacking and CH---π Interactions of Aromatics on the Surface of Single-Wall Carbon Nanotubes: An MP2 Study vol.112, pp.50, 2003, https://doi.org/10.1021/jp807809u
  54. ONIOM Study of the Mechanism of the Enzymatic Hydrolysis of Biodegradable Plastics vol.82, pp.3, 2003, https://doi.org/10.1246/bcsj.82.338
  55. Mechanistic Investigation on 1,5- to 2,6-Dimethylnaphthalene Isomerization Catalyzed by Acidic β Zeolite: ONIOM Study with an M06-L Functional vol.113, pp.36, 2003, https://doi.org/10.1021/jp904098t
  56. A Two-Layer ONIOM Study on Initial Reactions of Catalytic Cracking of 1-Butene To Produce Propene and Ethene over HZSM-5 and HFAU Zeolites vol.114, pp.13, 2003, https://doi.org/10.1021/jp910617m
  57. IR Characterization of Tip-Functionalized Single-Wall Carbon Nanotubes vol.114, pp.49, 2003, https://doi.org/10.1021/jp104883e
  58. The effects of regularly spaced glutamine substitutions on alpha-helical peptide structures: A DFT/ONIOM study vol.512, pp.4, 2003, https://doi.org/10.1016/j.cplett.2011.07.024
  59. DFT Study of Nitrogen-Substituted FAU: Effects of Ion Exchange and Aluminum Content on Base Strength vol.115, pp.1, 2011, https://doi.org/10.1021/jp106971u
  60. The experimental and theoretical QM/MM study of interaction of chloridazon herbicide with ds-DNA vol.79, pp.5, 2003, https://doi.org/10.1016/j.saa.2011.04.012
  61. Direct catalytic decomposition of NO with Cu-ZSM-5: A DFT-ONIOM study vol.348, pp.1, 2003, https://doi.org/10.1016/j.molcata.2011.07.018
  62. Study of mutation and misfolding of Cu-Zn SOD1 protein. vol.33, pp.1, 2003, https://doi.org/10.1080/07391102.2013.865104
  63. Quantum chemistry study on the mechanism of oxidation of cysteine to cystine using hydrogen peroxide vol.190, pp.10, 2003, https://doi.org/10.1080/10426507.2015.1019069
  64. A Qm/Mm Study of No Oxidation on the Nanocrystalline Surface of Tungsten Oxide vol.40, pp.1, 2015, https://doi.org/10.3184/146867815x14204818379214
  65. A Combined Quantum Mechanics and Molecular Mechanics Study on Nitrogen Oxide Adsorption/Dissociation on a Tungsten Oxide Surface vol.40, pp.2, 2003, https://doi.org/10.3184/146867815x14259975542399
  66. Implicit and explicit solvent effects on the selectivity of the cycloaddition reaction of cyclopentadiene and methyl acrylate; a theoretical study vol.40, pp.3, 2003, https://doi.org/10.3184/146867815x14297104685269
  67. TriplatinNC and Biomolecules: Building Models Based on Non-covalent Interactions vol.7, pp.None, 2019, https://doi.org/10.3389/fchem.2019.00307
  68. Gaining Insight into the Effect of Organic Interface Layer on Suppressing Ion Migration Induced Interfacial Degradation in Perovskite Solar Cells vol.30, pp.35, 2003, https://doi.org/10.1002/adfm.202000837
  69. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy vol.23, pp.15, 2003, https://doi.org/10.1039/d1cp00044f
  70. Evolution of the Computational Pharmaceutics Approaches in the Modeling and Prediction of Drug Payload in Lipid and Polymeric Nanocarriers vol.14, pp.7, 2003, https://doi.org/10.3390/ph14070645
  71. Connecting Gas-Phase Computational Chemistry to Condensed Phase Kinetic Modeling: The State-of-the-Art vol.13, pp.18, 2003, https://doi.org/10.3390/polym13183027