Effect of Ionic Liquid on the Kinetics of Peroxidase Catalysis

  • Lee, Yoon-Mi (Department of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Kwon, O-Yul (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Yoo, Ik-Keun (Department of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Ryu, Keun-Garp (Department of Chemical Engineering and Bioengineering, University of Ulsan)
  • Published : 2007.04.30

Abstract

The effect of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate $([BMIM][BF_4])$, on the horseradish peroxidase (HRP)-catalyzed oxidation of 2-methoxyphenol (guaiacol) with hydrogen peroxide $(H_2O_2)$ was investigated. HRP maintains its high activity in the aqueous mixtures containing various concentrations of the ionic liquid and even in 90% (v/v) ionic liquid. In order to minimize the effect of solution viscosity on the kinetic constants of HRP catalysis, the enzymatic reactions in the subsequent kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. As the concentration of $[BMIM][BF_4]$ increased for the oxidation of guaiacol by HRP, the $K_m$ value increased with a slight decrease in the $K_{cat}$ value: The $K_m$ value increased from 2.8 mM in 100% (v/v) water to 22.5mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to HRP.

Keywords

References

  1. Al-Kassim, L. and K. E. Taylor. 1994. Enzymatic removal of selected aromatic contaminants from wastewater by a fungal peroxidase from Coprinus macrorhizus in batch reactor. J. Chem. Tech. Biotechnol. 61: 179-182 https://doi.org/10.1002/jctb.280610214
  2. Chakraborty, J. and T. K. Dutta. 2006. Isolation of a Pseudomonas sp. capable of utilizing 4-nonylphenol in the presence of phenol. J. Microbiol. Biotechnol. 16: 1740-1746
  3. Ghan, H., T. Shutava, A. Patel, V. T. John, and Y. Lvov. 2004. Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcapsules. Macromolecules 37: 4519-4524 https://doi.org/10.1021/ma035896h
  4. Halliwell, B. and S. Ahluwalia. 1976. Hydroxylation of p-coumaric acid by horseradish peroxidase. Biochem. J. 153: 513-518 https://doi.org/10.1042/bj1530513a
  5. Hinckley, G., V. V. Mozhaev, C. Budde, and Y. L. Khmelnitsky. 2002. Oxidative enzymes possess catalytic activity in systems with ionic liquids. Biotechnol. Lett. 24: 2083-2087 https://doi.org/10.1023/A:1021305229969
  6. Kang, Y. S., Y. J. Kim, C. O. Jeon, and W. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825
  7. Kragl, U., M. Eckstein, and N. Kaftzik. 2002. Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13: 565-571 https://doi.org/10.1016/S0958-1669(02)00353-1
  8. Laszio, J. A. and D. L. Compton. 2001. $\alpha$-Chymotrypsin catalysis in imidazolium-based ionic liquids. Biotechnol. Bioeng. 75: 181-186 https://doi.org/10.1002/bit.1177
  9. Lee, Y., C. Park, B. Lee, E. Han, T. Kim, J. Lee, and S. Kim. 2006. Effect of nutrients on the production of extracellular enzymes for decolorization of reactive blue 19 and reactive black 5. J. Microbiol. Biotechnol. 16: 226-231
  10. Lide, D. R. 1994. CRC Handbook of Chemistry and Physics, pp. 6-241-6-246. 75th ed. CRC Press Inc., Florida, U.S.A
  11. Lozano, P., T. de Diego, J. P. Guegan, M. Vaulyier, and J. L. Iborra. 2001. Stabilization of $\alpha$-chymotrypsin by ion c liquids in transesterification reactions. Biotechnol. Bioeng. 75: 563-569 https://doi.org/10.1002/bit.10089
  12. Maruyama, T., S. Nagasawa, and M. Goto. 2002. Poly(ethylene glycol)-lipase complex that is catalytically active for alcoholysis reactions in ionic liquids. Biotechnol. Lett. 24: 1341-1345 https://doi.org/10.1023/A:1019848400436
  13. Nicell, J. A. 1994. Kinetics of horseradish peroxidase-catalyzed polymerization and precipitation of aqueous 4-chlorophenol. J. Chem. Tech. Biotechnol. 60: 203-215 https://doi.org/10.1002/jctb.280600214
  14. Park, C., Y. Lee, T. Kim, B. Lee, J. Lee, and S. Kim. 2004. Decolorization of three acid dyes by enzymes from fungal strains. J. Microbiol. Biotechnol. 14: 1190-1195
  15. Poker, Y. and N. Janjic. 1987. Enzyme kinetics in solvent of increased viscosity. Dynamic aspects of carbonic anhydrase catalysis. Biochemistry 26: 2597-2606 https://doi.org/10.1021/bi00383a028
  16. Rao, A. M., V. T. John, R. D. Gonzalez, J. A. Akara, and D. L. Kaplan. 1993. Catalytic and interfacial aspects of enzymatic polymer synthesis in reversed micellar systems. Biotechnol. Bioeng. 41: 531-540 https://doi.org/10.1002/bit.260410505
  17. Ryu, K., J. Park, and K. Im. 1996. Peroxidase-catalyzed removal of aromatic pollutants. Korean J. Biotechnol. Bioeng, 11: 681-688
  18. van Rantwijk, F., R. M. Lau, and R. A. Sheldon. 2003. Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21: 131-138 https://doi.org/10.1016/S0167-7799(03)00008-8
  19. Whitaker, J. R. 1972. Principles of Enzymology for the Food Science, pp 591-605. Marcel Dekker, Inc., New York, U.S.A
  20. Woo, S. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  21. Yang, Z. and W. Pan. 2005. Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme Microb. Technol. 37: 19-28 https://doi.org/10.1016/j.enzmictec.2005.02.014