DOI QR코드

DOI QR Code

Enzymatic Biodiesel Synthesis of Waste Oil Contained High Free Fatty Acid

효소 촉매를 이용한 고산가 폐유지 유래 바이오디젤 합성

  • Jeon, Cheol-Hwan (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Lim, Kwang-Mook (Vitzronextech) ;
  • Kim, Jae-Kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Hwang, In-Ha (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 전철환 (한국석유관리원 석유기술연구소) ;
  • 임광묵 (비츠로넥스텍) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 황인하 (한국석유관리원 석유기술연구소) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2018.11.20
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

Non-edible oil sources (i.e., Palm Acid Oil, waste animal fat) usually contain relatively high amount of free fatty acids (FFA) that make them inadequate for direct base catalyzed transesterification reaction. Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification, and has certain advantages over the chemical catalysis of transesterification, as it is less energy intensive, allows easy recovery of glycerol and the transesterification of glycerides with high free fatty acid contents. In this study, we synthesized biodiesel through enzymatic catalyzed process using high free fatty acid containing waste oil in biodiesel reactor (1 ton/day) and optimized the biodiesel production processes.

비식용 원료인 Palm Acid Oil, 동물성 폐유지 등은 상대적으로 자유 지방산 함량이 높기 때문에 일반적인 염기 촉매를 이용한 전이에스테르화 반응에 적합하지 않다. 효소 촉매를 이용하면 염기 촉매에서 해결할 수 없는 몇 가지 문제를 해결할 수 있으며, 에너지 소비가 작고, 바이오디젤 부산물인 글리세롤 회수가 쉬우며, 자유 지방산 함량이 높은 트리글리세라이드에 대한 전이에스테르화 반응이 가능하다. 본 연구에서는 고정화 효소 촉매를 이용하여 1 ton/day 용량의 반응기에서 비식용 폐유지를 바이오디젤로 합성하였으며, 반응 공정의 변수를 최적화하였다.

Keywords

HGOHBI_2018_v35n4_1048_f0001.png 이미지

Fig. 1. Biodiesel Reactor (1 ton/day)

HGOHBI_2018_v35n4_1048_f0002.png 이미지

Fig. 2. Vacuum distillation apparatus (left) and deaciding apparatus (right).

HGOHBI_2018_v35n4_1048_f0003.png 이미지

Fig. 3. Biodiesel conversion before screen mesh installation.

HGOHBI_2018_v35n4_1048_f0004.png 이미지

Fig. 4. Screen mesh installed in biodiesel reactor.

HGOHBI_2018_v35n4_1048_f0005.png 이미지

Fig. 5. Biodiesel conversion after screen mesh installation with air bubbling.

HGOHBI_2018_v35n4_1048_f0006.png 이미지

Fig. 6. Biodiesel conversion according to air flow ratio.

HGOHBI_2018_v35n4_1048_f0007.png 이미지

Fig. 7. Biodiesel conversion according to impeller speed.

HGOHBI_2018_v35n4_1048_f0008.png 이미지

Fig. 8. Biodiesel conversion according to methanol addition rate.

HGOHBI_2018_v35n4_1048_f0009.png 이미지

Fig. 9. Composition distribution of fatty acid methyl ester in biodiesel.

Table 1. Biodiesel analysis methods

HGOHBI_2018_v35n4_1048_t0001.png 이미지

Table 2. Distribution of FAME composition

HGOHBI_2018_v35n4_1048_t0002.png 이미지

Table 3. Biodiesel quality analysis results

HGOHBI_2018_v35n4_1048_t0003.png 이미지

References

  1. "Petroleum and Petroleum Substitute Fuel Business Act", Enforced Date 28, March, 2017, No. 14476.
  2. "Act on the Promotion of the Development, Use and Diffusion of New and Renewable Energy", Enforced Date 23, September, 2016, No. 14079.
  3. J. K. Kim, J. Y. Park, C. H. Jeon, K. I. Min, Y. S. Yim, C. S. Jung, J. H. Lee, "Fuel properties of various biodiesels derived vegetable oil", J. of Korean Oil Chemist' Soc., Vol. 30, pp. 35-48, (2013). https://doi.org/10.12925/jkocs.2013.30.1.035
  4. D. D. Bala, K. de Souza, M. Misra, D. Chidambaram, "Conversion of a variety of high free acid containing feed stock to biodiesel using solid acid supported catalyst", Journal of Cleaner Production, Vol. 104, pp. 273-281, (2015). https://doi.org/10.1016/j.jclepro.2015.05.035
  5. D. L. Manuale, G. C. Torres, C. R. Vera, J. C. Yori, "Study of an energy-integrated biodiesel production process using supercritical methanol and low-cost feedstock", Fuel Processing Technology, Vol. 140, pp. 252-261, (2015). https://doi.org/10.1016/j.fuproc.2015.08.026
  6. G. Baskar, R. Aiswarya, "Trends in catalytic production of biodiesel from various feedstocks", Renewable and Sustainable Energy Reviews, Vol. 57, pp. 496-504, (2016). https://doi.org/10.1016/j.rser.2015.12.101
  7. J. Y. Park, J. K. Kim, C. K. Park, "A review of biofuels production technologies from microalgae", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27. No. 4, pp. 386-403, (2016). https://doi.org/10.7316/KHNES.2016.27.4.386
  8. J. K. Poppe, R. Fernandez-Lafuente, R. C. Rodrigues, M. A. Z. Ayub, "Enzyme reactors for biodiesel synthesis: Present status and future prospects", Biotechnology Advances, Vol. 33, pp. 511-525, (2015). https://doi.org/10.1016/j.biotechadv.2015.01.011
  9. A. Canet, K. Bonet-Ragel, M. D. Benaiges, F. Valero, "Lipase-catalysed transesterification: Viewpoint of the mechanism and influence of free fatty acids", Biomass and Bioenergy, Vol. 85, pp. 94-99, (2016). https://doi.org/10.1016/j.biombioe.2015.11.021
  10. D. Y. C. Leung, X. Wu, M. K. H. Leung, "A review on biodiesel production using catlayzed tranesterification", Applied Energy, Vol. 87, pp. 1083-1095, (2010) https://doi.org/10.1016/j.apenergy.2009.10.006
  11. K. Min, C. Park, J. Kim, B. Na, "Study on potential feedstock amount analysis of biodiesel in Korea", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, pp. 447-461, (2016). https://doi.org/10.7316/KHNES.2016.27.4.447
  12. E. J. Jang, M. E. Lee, J. Y. Park, K. I. Min, E. S. Yim, J. H. Ha, B. H. Lee, "A study on the Quality Characteristics of Feedstocks for Power Bio-Fuel Oil", J. of Korean Oil Chemists' Soc., Vol. 32, No. 1., pp. 136-147, (2015) https://doi.org/10.12925/jkocs.2015.32.1.136
  13. J. H. Ha, E. J. Jang, Y. C. Kwon, "A study on the Performance Evaluation and Quality for Power Bio-Fuel Oil", J. of Korean Oil Chemists' Soc., Vol. 32, No. 3., pp. 588-598, (2015) https://doi.org/10.12925/jkocs.2015.32.3.588
  14. S. W. Hong, H. J. Cho, Y. K. Yeo, "An Analysis of Characteristics for the Non-catalytic Esterification of Palm Fatty Acid Distillate (PFAD)", Korean Chem. Eng. Res., Vol. 52, No. 3., pp. 395-401, (2014) https://doi.org/10.9713/kcer.2014.52.3.395
  15. A. M. Klibanov, "Asymmetric tranformations catalyzed by enzymes in organic solvent", Acc. Chem. Res., Vol. 23, pp. 114-120, (1990) https://doi.org/10.1021/ar00172a004
  16. R. Gupta, N. Gupta, P. Rathi, "Bacterial lipases: an overview of production, purification and biochemical properties", Appl. Microbiol Biotechnol, Vol. 64, pp. 763-781, (2004). https://doi.org/10.1007/s00253-004-1568-8